AD=A119 081

UNCLASSIFIED

L
JUN

117 RE
N

SCANCH INST ROME NY
THE PAVE PAwS SOFTwARE

Fre 92
MAINTENANCE ENVIRONMENT. (U}
730608=80~C-0223

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS RPAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE aEr OB O T IONS

L!'._nﬂ?ﬂ'ﬂfn'ﬁ 7 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER]
RADC-TR-82-169 D.A/L G akf

& TITLE (and Subtitlie) S. TYPE OF REPOART & AERIOO COVERED

MPP IN THE PAVE PAWS SOFTWARE MAINTENANCE 1§n3in:egzmici% P b
ENVIRONMENT -

4. PERFORMING OG. REPORT NUMBER

OR GRANT NUM

7: AUTHOR(S)

IITRI Staff 30602-80-C~N223

10. ::OGIAM ELEMENT. PROJECT, TASK

A
9. PERFORMING ORGANIZATION NAME AND AQORESS S A AN A LN

IIT Research Institute
199 Liberty Plaza 63728F
ome NY 13440 25280105
1. CONTROLLING OFFICE NAME AND AOORESS 12. REPORT OATE

une 1982

13, NUMBER OF PAGES

Rome Alr Development Center (COEE)
Griffiss AFB NY 13441

2 —
r MONI '0""6 AGENCY NAME & ADORESS(IL ditterent from Controlling Office) 15. SECUMITY CLASS. (of ihis report)
[INCLASSIFIED
1 DECL ASSIFICATION/ DOWNGRADING
Same E/; SCHEOULE

I ———
T6. OISTRIBUTION STATEMENT /of thiz Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, il different (rom Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John Palaimo (COEE)

19. XEY WORDS (Continue on reverse side if necessary and ldentily by block number)

odern Programming Practices

peration and Maintenance
Software Data Collection
Software Engineering Tools

20. ABSTRACT (Continue on reverse side If necessary and identify by bdlock number)
his report presents the results of a study to establish a baseline softwar#
aintenance experience database and to determine relationships which exist
on the use of Modern Programming Practices and Software Engineering Tools on
the ease of software wmaintenance of the PAVE PAWS Phased Array Warning

Syst:ﬂY

0D ,:2:"” 1473 coimion oF 1 nOV €313 OBSOLETE

—_——JINCIASSIEIED.
SECURITY CLASSIPFICATION OF THIS PAGE (When Deate Entered)

PREFACE

This document is the final report of Rome Air Development Center contract
F30602-80-C-0223 titled "Analysis of PAVE PAWS Ops Data". This contract was
performed in support of the U.S. Air Force Electronic Systems Divisfon's (ESD)
and Rome Air Development Center's (RADC) mission to provide standards and
technical guidance to software acquisition managers.

This report presents the results of a study tv establish a baseline software
maintenance experience database and to determine relationships which exist
between the use of Modern Programming Practices and Software Engineering Tools on
the ease of software maintenance of the PAVE PAWS Phased Array Warning System.

To achieve this purpose the IIT Research Institute (IITRI) study team
performed a literature search, conducted on-site interviews, collected anomoly
) and change data, established continuing data collection and analysis procedures,
developed a machine readable software maintenance experience database and
performed analysis of the anomoly and change data.

}'Accession Fo |

NTIS cragl

D71 TAR) |

L O | ! :

Ju oot i !

3 o o o .
b 1

) | : y/ 1 |

£ it Codes 1

.1 aifor ‘

Di.* Doeinl :

. | i

‘ ;

| _‘E;i>{ ‘ i
|

|

!

|

!

- P PR NRTIR T

FRECKED1AG FAGRE B

%E iii

AD
ADCOM
ADP

ANP /ANL
ADP/TAC
A‘DP/’RDR
ADP/SYS
ADQ

ccs

CDF
CMAF
cePc
CPCG
CPCI
CPT
CPT & E
chu

CRB
DACS
DBMS
DR

DRDB
DT & E
ESD
HIPO
HOL

HQ

1/0
INTV
JcL
Loc
LoL
MAF
MDIS

ACRONYMS

SPA Division

Air Defense Command

Programming Branch

Programming Branch/Analysis Section
Programming Branch/Tactical Section
Programming Branch/Radar Control Section
Programming Branch/Operating System Section
Quality Assurance Branch
Configuration Control Board

CPCG Description Form

CPCG Maintenance Activity Form
Computer Program Component

Computer Program Configuration Group
Computer Program Configuration Item
Chief Programmer Team

Chief Programmer Test and Evaluation
Cantral Processing Unit

Configuration Review Board

Data and Analysis Center For Software
Data Base Management System
Discrepancy Report

Discrepancy Report Data Base
Development Test and Evaluation
Electronic Systems Division
Hierarchical Input-Process-Output
Higher Order Language

Headquarters

Input /Output

Interview Data

Job Control Language

Lines of Code

Lower Order Language

Maintenance Activity Form
Modification Design and Interface Specification

MDQS
MpP
MRA
MWS
NORAD
o&M
OT & E
PC
PCD
PCF
PDDR
PDL
PDTR
PEP
PMR
PPCDF
PPCSF
PPDRH
« PMAF
PPOS
PPPCH
PPPEP
PPSCH
PPSL
PRCL

PRG
PSL
PSIM
PT&E
PTAC
RADC
SAC
SCR8
SE

SEG

Management Data Query System

Modern Programming Practices

Memo of Recommended Action

Missile Warning Squadron

North American Defense

Operations and Maintenance

Operational Test and Evaluation

Project Control

Program Change Document

Project Control Form

Program Document Discrepancy Report

Program Design Language

PAVE PAWS Data Reduction Miscellaneous Support
Programmer Experience Profile

Program Modification Requedt

PAVE PAWS CPCG Description File

PAVF PAWS Segment Change History File

PAVE PAWS Report History File

PAVE PAWS CPCG Maintenance Activity File
PAVE PAWS Operating System

PAVE PAWS CPC Change History File

PAVE PAWS Programmer Experience Profile File
PAVE PAWS Segment Change History File

PAVE PAWS PSL Software

PAVE PAWS Radar Control Software, Signal

Processor Software

Receiver/Transmitter Test Software System Analysis

Summary by Programs
Program Support Library

PAVE PAWS Simulation and Target Scenario Generation

Program Test and Evaluation
PAVE PAWS Tactical Software
Rome Air Developmen: Center
Strategic Air Command

Site Configuration Review Board
Software Engineering

Summary hy Segments

vi

sP
SPA
SPO
SVR
S/
6MWS
7MWS

Structured Programming

System Programming Agency
System Project Office

Software Version Release
Software

Sixth Missile Warning Squadron
Seventh Missile Warning Squadron

vii

;
%
A

RS

B

TABLE OF CONTENTS

INTRODUCTION . . .
1.1 Objectives and Scope . . « + + ¢« « ¢ & «
1.2 Background . + « « ¢ o + ¢ o o o o 4 o . s
1.3 Management Summary . . ¢« ¢ ¢ o o s ¢ o s o

1.3.1 Purposes of this Study

1.3.2 Summary of the Study Approach. . .
PAVE PAWS MAINTENANCE ENVIRONMENT.

e & o o e e+ o o ° o * 2 o e =

’2.1 Intr‘OdUCtion.-....-........

2.2 PAVE PAWS Maintenance Organization
2.3 PAVE PAWS Maintenance Process Overview . .

2.4 Configuration Control Suumary Description. .

DATA COLLECTION. . « v ¢ ¢ o ¢ o o ¢ o o o o o« »
3.1 Methodology. . « = « ¢ ¢ v v v v v v v 4
3.2 Data Identification. . .

3.2.1 Questionnaire Interview Procedure.
3.3 Data Collection (Data Availability). . . .
3.4 Data Collection Forms. « « « & o

3.4.1 Introduction ¢ ¢ v v v 4 0 0 ..
3.4.2 Programmer Experience Profile (PEP) Form
3.4.3 CPCG Description Form (CDF).
3.4.4 (CPCG Maintenance Activity Form (CMAF).
3.5 Data Processing and Summarization.
3.6 PAVE PAWS Maintenance Data Base. « . .
STUDY RESULTS. & v v 4 o ¢ ¢ o o o o o o o o o o o o
4.1 Introduction . . . & & v v v 4 4 b 0 b b b e e e e
4.2 Summary of PAVE PAWS Maintenance Personnel Interviews.

4.2.1 Top-Down Program Development . . .

4.2.2 Chief Programmer Team/Librarian. . . .

4.2.3 Structured Programming

4.2.4 Structured Walkthrough and Reviews . .
4.2.5 Independent Quality Assurance/Testing.
4.2.6 Program Support Library (PSL).
4.2.7 HIPOCharts. . « « v v o ¢ ¢ o o o« o &

viii

L3

PAGE
1-1
1-1
1-1
1-3
1-3
1-4
2-1
2-1
2-1
2-4
2-7
3-1
3-1
3-2
3-3

3-5
3-5

3-6
3-6
3-12
3-15
4-1
4-1
4-1
4-2
4-3
4-5

4-7
4-9
4-10

TABLE OF CONTENTS (CONT'D)

4.2.8 Program Design Language (PDL).

4.2.9 Precompilers . « « « ¢ ¢« o ¢ 4 o o o o

4.3 Empirical Data Summary ¢« « ¢« . ¢ . .
4,3.1 Introduction « ¢ ¢« ¢ ¢ v ¢ &

4.3.2 Maintenance Forms Generation Procedure
4.3.2.1 Maintenance Packages . . .

4.3.3 Data Distributions
4.3.3.1 Productivity Data. .

4,3.3.2 Measurement Data . .

4.3.4 Data Collection Refinements. .

4,3.5 Future Research.

4.4 Conclusions and Recommendations. . . .

.

REFERENCES L . L] L . . L] - L . L L] L4 L L L4 L L] - L] L] L .

ix

APPENDIX A - INSTRUCTIONS FOR COMPLETING DATA COLLECTION
APPENDIX B - PAVE PAWS MAINTENANCE DATABASE.

FORMS

P et

PAGE
4-11
4-12
4-12
4-13
4-14
4-14
4-15
4-15
4-23
4-28
4-28
4-29

R-1

B-1

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

3.1:
3.2:
3.3:
3.4:
3.5:
3.6:
3.7:

3.8:

4.1:
4.2:
4.3;
4.4:
4.5;
4.6:
4.7:
4.8:
4.9:

4.10:
4.11:
4.12:
4,13
4.14:

LIST OF FIGURES

EXAMPLE OF COMPLETED CPCG DESCRIPTION

FORM

TABLE OF TABLES

DR DISTRIBUTION. . « &« + &« « & . . .

CPCI ASSIGNMENTS e e

EXAMPLE OF COMPLETED CDF FORM.
EXAMPLE OF COMPLETED CPCG STATUS CODING FORM
EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY FORM. . .
EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY CODING.

DATABASE FILES e e e e e e e

EXAMPLE OF COMPLETED PROGRAMMER PROFILE.
EXAMPLE OF COMPLETED "PEP" CODING FORM e e e

FORM + . .

DISTRIBUTION OF MAINTENANCE PACKETS EXAMINED

CHANGES BY TYPE AND MANHOURS EXPENDED.
MANHOURS BY CHANGE “ v e

EFFECTED LINES OF CODE DISTRIBUTION.
EXPANSION RATIOS
PRODUCTIVITY MEASUREMENTS.
MANHOURS PER 1000 LOC. e
LOC GENERATED/MONTH. . . «

ERROR TYPE DISTRIBUTION.
MEANS OF DETECTION DISTRIBUTION. . .
ERROR TYPE VERSUS MEANS OF DETECTION

¢ o o & 8 o s s s

s s & & ® e e e s o .

EFFORT VERSUS ERROR CORRECTION/ENHANCEMENT e e e e

PAGE
3-7
3-8
3-9
3-10
3-11
3-13
3-14

3-17

PAGE
4-13
4-14
4-14
4-16
4-17
4-19
4-20
4-21
4-22
4-22
4-24
4-25
4-26
4-27

ACKNOWLEDGMENT

IIT Research Institute wishes to express sincere thanks to Lt. Col. R.
Youngblood, Capt. A. Harriott, Capt. R. Hart, Capt. D. Henry, and Mr. G. Tyrrel
of the PAVE PAWS System Programming Agency for permitting us access to their
environment, providing time from their busy schedules to support the collection
of information, and allowing access to their files that permitted evaluation of
Modern Programming Practices, Tools and Techniques in the PAVE PAWS maintenance

environment.

i
| xi

. T LT e I e e AT T D RSN A TR WS i b T Y i aneo B A L TN

SECTION I

INTRODUCTION

1.1 Objectives and Scope

The overall goal of this effort is to provide an evaluation of the impact of
Modern Programming Practices (MPP), tools, and techniques on the Operations and
Maintenance (0 & M) phase of the PAVE PAWS software life cycle. While the use of
modern programming techniques and software engineering tools for software
development is reported to produce significant improvements in programmer
productivity, cost, reliability and quélity of software systems, the PAVE PAWS
environment is believed to be the first area in which the impact of these
approaches may be evaluated in the 0 & M environment. Structured coding,
programming conventions, program design language, top-down design, the program
support 1ibrary, etc. should make software 0 & M tasks easier, reduce manpower
and training requirements, and thus reduce overall costs.

The objectives of this effort are two fold: 1) to determine if the toois
used for software development also have an impact on the 0 & M phase of the
software life cycle, and 2) to compile a database of 0 & M information.

1.2 Background

For a number of years, the U.S. Air Force through its procurement agencies,
the Electronic Systems Division (ESD) at Hanscom AFB, Massachusetts and the Rome
Air Development Center (RADC) at Griffiss AFB, New York, have pursued the
development of methodologies for the reduction of software development costs,
maintenance costs and the improvement of software quality. The impetus for this
effort has come from increasing demands for error-free, h{ghly reliable
software; from the need for software easily i.e., quickly and inexpensively
modified to meet newly imposed requirements; and from the recognition that a
cost-effective software engineering discipline can be achieved through the
identification, application and evaluation of improved production practices
(THAY76; MCCA77; STAN77; DONASO; WILL76; BAKE77).

o PRHENG S

These efforts have culminated in the practical development of methodologies
referred to as MPP. These include the structured programming of Dijkstra, as
formalized by a number of interpreters; managerial approaches such as those
developed by IBM or described by Weinberg and Yourdan; coding conventions; and a
variety of software tools, including source code preprocessors, monitors, pre-
compilers, verifiers, program support libraries, etc.

The initial experiences in the use of MPP indicated that many of the
recommended techniques could lead to major reductions in the costs of producing
software for major systems and to a noticeable improvement in the quality of the
software product.

To date, the validation of MPP has been primarily limited to the development
of software systems. The experience gained thus far has been highly favorable.

The development of the PAVE PAWS Phased Array Warning System at Beale AFB,
California and Otis AFB, Massachusetts has presented the unique opportunity to
assess the usefulness of MPP during the development of a major software system
and additionally to evaluate the effects of MPP and software engineering tools on
the 0 & M phase of the software life cycle.

PAVE PAWS was developed using a complete modern programming environment as
described in RADC-TR-79-139 and is believed to be the first such system to use
software engineering tools and methods in an integrated and comprehensive
manner. Studies of the development cycle of PAVE PAWS (RAYT79; CURT80b) suggest
that major benefits were derived from the use of MPP and software tools. These
benefits included:

o the control and management visibility required to guide a major software
project to a successful completion and schedule. In particular,
management found the mechanism of the Program Support Library (PSL) to be
of tremendous value as a management information tool;

o the disciplined programming environment of modern programming technology
used on PAVE PAWS measurably improved the transition of software
development from the mysterious and arty to the clear and cohesive world
of software engineering;

1-2

AP R B AIAL S L ek AT

o top-down design and implementation was effective in assuring that all
system functions were accounted for in the software design and assisted
in the tracing of system requirements from the highest level of mission
functions to the lowest component of code produced;

o the commonality and standardization of coding techniques, naming
conventions, and the uniform presentation accomplished by indented
listings contributed to programmer understanding within and among the
groups established to code major system functions. This commonality
enhanced design and code reviews by providing a common frame of reference
for discussion and continuity. Program concepts and structure could be
communicated between programmers and offered the greatest improvement to
efficiency and effectiveness.

As stated earlier, it was believed that the tools used for software
development would have an even greater payoff during the 0 & M phase of the
software life cycle. Structured coding, programming conventions, program design
language, top-down design, the program support library, etc., should make
software 0 & M tasks easier, reduce manpower and training requirements, and thus

reduce overall costs.

To form a basis for testing these beliefs, the PAVE PAWS Phased Array Warning
Systems at Otis AFB, Massachusetts and Beale AFB, California were selected with
the intention of evaluating the impact of MPP and software engineering tools on
the system maintenance activities.

1.3 Management Summary

1.3.1 Purposes of this Study \

The primary objectives of this study were to:

{
|
(1) Collect, screen and process data from the PAVE PAWS software maintenance
effort. ‘

(2) Compile a computer database of 0 & M data which can serve as a basis for
future software maintenance data collection efforts.

(3) Evaluate the effects of MPP and software engineering tools on the 0 & M
phase of the PAVE PAWS software life cycle.

1-3

s e

oot s AT APPSR AP o . 4 5 sl ot SH NI 35 - - . 73 e S OIS K it o AR IO o0 I O xS 20

1.3.2 Summary of the Study Approach

To accomplish the objectives of this effort, the following tasks were

performed:

(1) The literature was reviewed to identify 0 & M activities and data
collection requirements in order to determine the effects of the use of
MPP during development, on the maintenance phase.

(2) Software maintenance data collection forms and procedures were designed.

(3) Interviews were conducted with 0 & M personnel at Beale AFB to identify
the benefits and difficulties of utilizing MPP and software engineering
tools in the maintenance environment.

(4) The software maintenance data that was collected by the PAVE PAWS
maintenance staff was screened for accuracy, applicability and
comp leteness; and was processed and stored in the PAVE PAWS Software

Maintenance Experience Database.

(5) The data collected in 3) and 4) was summarized and analyzed.

This software maintenance data is continuing to be collected by the PAVE PAWS
maintenance staff. The data is transmitted to the Data and Analysis Center for
Software (DACS) establishing a potential resource for more extensive and
conclusive study and analysis.

SECTION I1
PAVE PAWS MAINTENANCE ENVIRONMENT

2.1 Introduction

The delivery of the PAVE PAWS system by the contractor and acceptance by the
U.S. Air Force marked the transfer of responsibility for the PAVE PAWS system and
The PAVE PAWS
System Programming Agency (SPA) was the organization specifically created by the
Air Force and given the responsibility for software maintenance.
purpose of this section to provide an organizational description of the SPA and a

the initiation of the 0 & M phase of the software life cycle.

summary of the configuration control of software problems.

2.2 PAVE PAWS Maintenance Organization

The following is an extraction from the Organization Description of the SPA:

PAVE PAWS SPA Organizational Description:

It is the

Mission - The SPA mission is to support AN/FPS-115 missile warning system
operations and maintenance activities of all computer software for all
computer systems at all sites.

The SPA is composed of the following groups:

(a) The SPA staff (AD) - Provides leadership and management for the PAVE
PAWS SPA.

(b) The Programming branch (ADP) - Provides analysis, design,
development, enhancement and maintenance for all PAVE PAWS software
with the exception of the Scenario Generator, Program Support
Library and miscellaneous support software. It is composed of four
sections organized across subsystem lines. These sections are:

(1) Analysis (ADP/ANL) - Provides immediate and long-range analysis
of AN/FPS-115 system software effectively. Priority task is
assistance in high-priority error analysis. Ongoing task is in-
depth analysis of total system to improve software reliability,
accuracy, maintainability and availability.

(2) Tactical (ADP/TAC) - Provides design, development, enhancement

and maintenance for all tactical software which includes the
Real Time Monitor, Mission Control, Radar Management,

2-1

A R S T sy S0l S N AN 5530, AT SR 7 o DA 4.5 XSRS

TP e

: Calibration and Performance Monitor, Tracking, and Displays and
Control.

(3) Radar Control (ADP/RDR) - Provides design, development,
enhancement and maintenance of all Radar Control and diagnostic
software. This includes the MODCOMP operating system, the on-
line and off-line diagnostic software, the signal processing
software, and the tactical radar control function.

(4) Operating System (ADP/SYS) - Provides design, development,
enhancement and maintenance for all CYBER system so:.ware to
include the CYBER operating system, all external communications
(radar controller, displays, communications lines), system
reconfiguration, the displays subsystem, and on-line
diagnostics.

(c) The Quality Assurance Branch (ADQ) - Provides central configuration
control of all PAVE PAWS system software and documentation.
Maintains and controls electronic printed source for all software
under configuration control. Acts as administrative control point
for all software and documentation change actions throughout all
stages of development. (Note: Serves as central point of control
for accepting and processing all discrepancy reports). Provides and
maintains central library of formal system documentation, vendor
publications, and educational and instructional materials. Provides
design, development enhancement and maintenance for all system
support software to include Real Time Simulation, Target Scenario
Generation, Data Reduction, and Program Support Library software.
Also responsible for all non-operational software designed to
support any activity within the system. Responsible for testing all
software prior to release to insure software and system reliability.

The organizational structure of the SPA provides a facility to utilize MPP
and reflects an understanding of their associated management techniques.

The SPA is designed around the Chief Programmer Team concept. The
Programming Branch (ADP) is one chief programmer team, and consists of the four
sections previously described. Each section is organized as a programming team,
with the section head equivalent to a lead programmer. :he branch chief acts as
the chief programmer. Each section (or team) is responsible for a major PAVE
PAWS maintenance component. These responsibilities are aligned with the
Computer Program Configuration Items (CPCI's) of the PAVE PAWS development
requirements, new requirements now that the system is operational, and modern
programming management techniques. Currently ten CPCIs are defined and assigned
as follows:

2-2

SYS - CPCI 1 -- PAVE PAWS Operating System
~ TAC - CPCI 2 -- Tactical Software
o RDR - CPCI 6 -- Radar Control Software
CPCI 7 -- Signal Processor Software
CPCI 8 -- Receiver/Transmitter Test Software
CPCI 9 -- Digital Module Test Station Software

o ANL -- System Analysis

The second chief programmer team (ADQ) is headed by the branch chief. This

team maintains the following CPCIs:

o ADQ - CPCI 3 -- Simulation Software and Target Scenario Generation

CPCI 4 -- Program Support Library Software
CPCI 5 -- Data Reduction Software
CPCI 10 -- Miscellaneous Support Software
In addition to the above CPCIs, the SPA/AD has assigned the ADQ branch the
) responsibility for configuration management, testing, reliability and
maintenance change certification. The ADQ branch is assigned the major
responsibility as the "independent test team" for certifying all proposed
changes to the PAVE PAWS software. The ADQ branch is also the “quality assurance
team", responsible for reviewiwg all changes and providing a configuration
management control and dissemination point.
The SPA Procedure for Testing by ADQ is:
»

0 After CPT & E is complete, a complete test package is delivered to ADQ.
This package includes: the modified software, the programmer test
sequence, the CP test sequence, and all updated documentation.

o The initial testing by ADQ is done on the backup Cyber in an off-line
mode. ADQ recompiles the CPCI code to be tested along with the
unmodified code and recreate the new CPCI.

i o The first phase of testing is a recreation of the PT & € and CPT & E. If

! successful, the testing procedure will continue.

; o DT & E (development test and evaluation) by ADQ involves the use of

| simulation runs against the modified CPCI. Simulation tapes were

} generated by the contractors as part of the PAVE PAWS deliverables and in

} 2-3

? WIS S AR P NS DAL ot 5. a7 <4 U IS e etttk

some cases have been extended by the SPA staff. ADG uses these "Sim
tapes" in their DT & E and checks for two things at the end of a run:

- Did the modified software perform properly?
- Was system performance degraded by the modifications?

o If no problems are encountered, the results of the testing, the test
packages, and its documentation are forwarded to HQ SAC for review and
approval.

0 Assuming approval by SAC, time is requested on the operational system to
perform operational test and evaluation (OT & E) which is performed by
the SPA on the operational system. With higher headquarters approval,
the PAVE PAWS operational system is reloaded with the new software.
During OT & E, the operations personnel continue their normal functions
and with the aid of the SPA they attempt to use the functions affected by
the modified software.

o If OT & E is successful, a request for an operational date is forwarded
to higher HQ. Depending on circumstances, the software may be left in
the system and the communications environment turned on. Alternatively,
they may reload the previous version and return to full operational
status (communications gear turned on).

0 After approval by higher HQ, an official release date is established. On
this date, the PAVE PAWS systems at Beale AFB and OTIS AFB will contain
the modified software. Two factors currently require special
consideration in the independent test and evaluation process: time on
the operational system for testing, and manpower resources to carry out
the testing.

0 Requests for time on the operational system must be submitted six weeks
in advance. This creates problems for several reasons. A1l requests for
system modifications are "Critical" depending on who is requesting them.
As a result, the requests for time are made prior to completion of DT &
E. Thus, there is always the possibility that the software won't be
ready when the computer is ready. Also the amount of time requested can
be a factor since it impacts the operational environment. If too much
time is requested, mission schedules are affected. If too little time,
the tests may not be completed.

2.3 PAVE PAWS Maintenance Process Overview

The keys to the PAVE PAWS maintenance process are: 1) how the SPA is
informed of a system problem {or request for enhancement), and 2) the internal
structure that the SPA has created for handling a request once they have been
informed.

2-4

{
i
]
{
]
1

xgh. .,

R - S L S PR

The mechanism for informing the SPA of a problem is the discrepancy report
(DR) and the structure for processing all DRs is the Configuration Review Board
(CRB). The following is a brief description of the DR and CRB as applied to the
PAVE PAWS maintenance process:

o A DR is used to report a suspected error or a system problem and to
request an enhancement to the software source code or documentation;

o A DR may be originated by anyone (the users of the Sixth Missle Warning
Squadion (6 MWS) or Seventh Missle Warning Squadion (7 MWS), the
maintenance staff, higher headquarters, etc.);

0 A DR contains a statement of a probiem or a request for enhancement;

0 When a DR is submitted by a site (6 MWS at Otis or 7 MWS at Beale), a Site
Configuration Review Board (SCRB) reviews the DR prior to forwarding it
to the SPA CRB. A1l other DRs are forwarded to the SPA directly;

o The SPA CRB meets on a periodic basis (weekly) to review all DRs. New
DRs are reviewed by the CRB, assigned to a SPA branch for analysis and a
suspense date assigned for a "Memo of Recommended Action" (MRA) to be
returned to the CRB. ORs which have been returned to the CRB by the SPA
division with an MRA, are reviewed by the CRB, and if approved by the
CRB, forwarded to higher headquarters for further action;

0 After approval is received by the SPA to proceed with modifications to
satisfy a DR, the CRB assigns the task to the SPA branch responsible for
the changes.

When a SPA branch receives a DR for action, the branch chief assigns the DR
to a section chief. The individual assigned is reponsible for reviewing all
previous documentation accompanying the DR, making the modifications required to
satisfy the DR, and extensively testing all changes. In addition, he is
responsible for a formal test plan to validate the changes and to update all
documentation affected by the changes. This completes the first step in the
modification precess, the Programmer Test and Evaluation (PT & E).

Upon receipt of the above from a programmer, the branch chief is responsible
for the next step, the Chief Programmer Test and Evaluation (CPT & E). Where the
programmer was respohsible for module testing and validation, the branch chief
functions as a chief programmer responsible for the integration testing of all
changes. The Chief Programmer Team will load all modified software for a major
system module and repeat not only the programmer test plans, but also all

2-5

simulation testing that applies to the module. If no problems are encountered, a
formalized test plan is created and submitted along with all documentation to the
ADQ branch for independent test and evaluation.

The preparation of a system software release is the responsibility of the ADQ
branch which has the major responsibility for certifying the modifications
before any software release can be considered. Certification in this context
means to assure as close to 100% certainty as is possible, that the modified
software once introduced into the operational system will not only perform as
advertised, but will also not detrimentally impact the operational system.
Develcpment Test and Evaluation (DT & E) is the process used by the ADQ branch to
certify a proposed system update. Using the backup hardware of the PAVE PAWS
system, the ADQ creates a new software system containing all chaiges which have
been incorporated into the proposed release. This candidate system is subjected
to extensive testing which includes a rerun of the PT & E and CPT & E sequences.
In addition, PAVE PAWS simulation runs are made against the candidate system as
well as any operational type tests which ADQ feels are necessary to check out the
candidate system. Only when the candidate system has passed all testing
successfully, will ADQ consider proposing it for Operational Test and Evaluation
(OT & E).

The oreparation of OT & E involves not only the SPA but also higher
headquarters (HQ SAC, ADCOM, and NORAD). Within the SPA, the ADQ branch prepares
complete documentation on the proposed release, and forwards a Version Release
Request to HQ SAC/SXMG for approval. (It is important to note that the
preparations and procedures for a proposed system release are quite detailed and
are only summarized here.) OT & E requires that the PAVE PAWS operationa’ system
be in a non-operational status until it can be verified that the newly introduced
software is functioning properly.

Upon completion of OT & £, PAVE PAWS is returned to its previous operational
state. A final OT & € test report is produced and submitted to HQ SAC/SXMG for
approval. Assuming no problems, SAC will designate a deadstart date/time when
the new system release will become operational.

2-6

—— ———

‘qu; i,

2.4 Configuration Control Summary Description

A DR is used to report known or suspected software and software documentation
problems to the SPA. A DR may be initiated by any person recognizing a
requirement, and all are reviewed by a Configuration Review Board for acceptance
or rejection. DR's not rejected will produce an additional series of forms to
further control the actions. These include a Program Modification Request (PMR)
a Program Change Document (PCD), a Program Documentation Discrepancy Report
(PDDR) and a Modification Design and Interface Specification (MDIS). A1l man
hours and computer time used by the division in gathering data and performing
initial analysis of the DR is logged on the Project Control (PC) form until the
action is completed and the DR is considered closed.

The following is a brief description of the purpose of these forms/documents:

PMR - Program Modification Request
used to request modifications to computer programs which add, modify or
delete operational capability so as to require specification changes, and/or
provide new programs, and/or provide new systems.

PCD - Program Change Document
used to document program malfunction corrections and data base changes

PDDR - Program Documentation Discrepancy Report

used to identify and correct errors in software documentation and to effect
formal changes in software documentation

DIS - Modification Design & Interface Specification

used to shew the proposed design of a software or hardware modification and
its interfaces, if any, with other software or hardware

PC - Project Control Form

used to track the milestones reached and computer and manpower resources used

2-7

P

3.1

SECTION III

DATA COLLECTION

Methodology

Data Collection was an iterative process influenced by data needs and the
availability of data to satisfy the initial objectives of this study. The steps
performed to collect and transform the data are summarized below:

1)

2)

3)

4)
5)

Reviewed the state-of-the-art in software maintenance to determine the
type of data which must be collected to evaluate the effects of MPP and
SE tools on the software maintenance process.

Developed a set of questions which were used to guide IITRI project
personnel during interviews with government maintenance personnel.
These questions served to obtain information related to personal
observations, experiences and opinions of maintenance personnel about
the usefulness of MPP and Software Engineering (SE) tools.

Visited the PAVE PAWS SPO at ESD to become acquainted with the current
PAVE PAWS O & M environment, including the level of the current data

collection effort.

Refined the set of interview questions developed in Step 2.

Interviewed PAVE PAWS maintenance personnel, particularly management, to
explain the purpose of the data collection effort, and to determine the

extent which they could cooperate and the availability of data. Obtained
were copies of the following software documentation and data:

0 PAVE PAWS source listings (unclassified only)
o Discrepancy Report Data Base (DRDB) output. The DROB is a machine

readable file developed and maintained by the PAVE PAWS maintenance
staff to track each discrepency report (DR) from initiation through

resolution.
0 PAVE PAWS software documentation (unclassified), including:
Software System Requirements Specifications
Detailed Design Specifications
User's Manual/Operator's Manual
Problem Reports

Software Version Release Reports
3-1

9

6) Developed a set of data collection procedures and forms, including:
o Programmer Experience Profile (PEP) Form

o Computer Program Configuration Group (CPCG) Description Form (CDF)
o CPCG Maintenance Activity Form (CMAF)

7) Coordinated with the maintenance personnel at Beale AFB on the
completion of the PEP form. Reviewed the PEP forms and revised the tool

usage questionnaires.

8) Interviewed maintenance personnel at Beale AFB to determine their
personal observations, experiences and opinions on the use of MPP and SE

tools.

9) Met with the maintenance personnel to explain the purpose of the
Maintenance Activity Form and obtain permission to review the
documentation on each Discrepency Report filed to date and to record the
desired information on the CMAF.

10) Transferred the CPCG/CPC/Segment description and change history data
from the PSL management reports to the PAVE PAWS component description
and change history forms. Transferred the data recorded on the data
collection forms to the data coding forms for input to the PAVE PAWS
Maintenance Experience Database.

3.2 Data Identification

The preparation for the data collection trip to the PAVE PAWS site at Beale
AFB, California consisted of reviewing all available PAVE PAWS documentation and
becoming familiar with the MPP, tools, and techniques that were used in the
development cycle of PAVE PAWS and which were included in the delivery and
acceptance of the PAVE PAWS system by the Air Force.

Upon completion of the above review, a report was generated by IITRI
outlining a data collection and reporting methodology for collecting information
which could be used to relate the quality of the software documentation and
source code, the use of SE tools, and the experience level of maintenance
personnel to the cost of operation and maintaining the PAVE PAWS Phased Array

Warning System.

The scope of this report was limited to those data collection activities
which were believed to be essential to accurately evaluate the effects of MPP and

3-2

% B ——_ o N S A I ROASS——A, "

SE tools on the 0 & M phase of the software life cycle. Emphasis was placed on
obtaining the opinions of the PAVE PAWS personnel through interviews. The PAVE
PAWS maintenance staff was also requested to complete a Programmer Experience
Profile questionnaire to determine their experience with MPP and SE tools.

3.2.1 Questionnaire Interview Procedure

The objective of this portion of the data collection effort was to obtain
information concerning the personal observations and opinions of the PAVE PAWS
maintenance staff with respect to MPP, tools and techniques. Previous efforts
have described and reviewed MPP from the development viewpoint and assessed their
value during the construction of a major system effort. While the information
from these previous efforts was helpful in formulating approaches for the IITRI
data collection effort at Beale, it is important to note that this portion of the
data collection effort by IITRI was concerned with the use of MFP, tools and
techniques by the PAVE PAWS maintenance staff in pursuing their function of
maintaining.the PAVE PAWS software.

The purpose of the data collection effort was to determine: 1) if the PAVE
PAWS maintenance staff continued to use these same MPP, tools and techniques; 2)
the value the maintenance staff assigned to these practices, tools and
techniques; and 3) the contribution of each to benefits realized in the 0 & M
Tife cycle.

In pursuing the data collection, a heavy reliance was placed on personnel
interviews. The initial portion of each interview was unstructured and involved
general discussions on the segment of PAVE PAWS for which the interviewee(s) had
been assigned responsibility. 1In this portion of the interview, the PAVE PAWS
segment, its structure as related to MPP, the difficulties and the benefits of
MPP as applied to the PAVE PAWS tasking of the segment, and the overall workload
of the segment was discussed. The second portion of the interview used a
structured approach involving the completion of the questionnaire contained in
the "PAVE PAWS Data Collection Scenario". The data collected in these interviews
is summarized in Section 4.2.

3-3

= NI NS T o MO Gl KM S OO NI 5 . .0t e 4 - 1 o X NI W PR s dom 3 il bt s e T

4

3.3 Data Collection (Data Availability)

Based on the analysis performed on the previous section the following data
was collected. The identified data essentially falls into two categories:

1) Data directly applicable to this analysis

2) Data collected for future analysis.
Data collected which falls in the first category is comprised of

o Hardcopy listings of all DR's filed since the maintenance staff became
involved during acceptance testing in October 1979. This data is
obtained from the online DR data base and contains the following

information:

- DR's opened to date

- DR's still open

closed DR's

Software Version Release Documentation

o0 Xerox copies of all available DR's and project control forms.

o Documents describing the organization structure of the maintenance staff
(SPA) and the operating instructions for each of the component

divisions.
o Personal observations and experiences of maintenance personnel with

respect to the use of MPP and tools for the various CPCIs being
maintained.

o Completed PEP forms for all maintenance personnel employed on-site since
November 1980.

o The following software maintenance packets which describe the attributes
of the modification:

o Program Change Documentation (PCD)

o Program Modification Requests (PMR)
o Program Documentation Discrepancy Reports (PDOR)

Within the second category the following data was collected:

0 Microfiche of the majority of the PAVE PAWS program design language (PDL)
and source code for CPCIs 1 through 6 as originally delivered by the
development contractor.

3-4

e ———. < e h s e e e . . Rt .
. —— - - EAREIRE SN S R ¥

-35.1' T

*

o PSL reports by subsystem (CPCG) and program {CPC) as of November 1980 and
August 1981.

Code progression and durability reports
- Summary of CPCGs by library

- Summary of CPCs by CPCG

- Summary of segments by CPC.

Procedures have been established with the PAVE PAWS SPA to continue
forwarding this information to the DACS periodically for maintenance database
update and follow-on analysis.

3.4 Data Collection Forms

3.4.1 Introduction

A set of software maintenance data collection forms were designed and
utilized to record the PAVE PAWS data collected during this effort. These forms
were designed to identify key data collection areas and be flexible enough to
accommodate additional data when it becomes available. The first form is the PEP
which is used to describe the experience background of the PAVE PAWS maintenance
personnel. The second form is the CPCG Description Form (CDF) which is used to
describe the development environment, constraints, composition and size of a
CPCG (a functionally oriented subsystem) for each CPCI. The third form is the
CPCG Maintenance Activity Form (CMAF) which is used to describe the reason and
nature of each software change and the resources required to implement the
change.

3.4.2 Programmer Experience Profile (PEP) Form

The PEP provides background information on the personne) performing the
maintenance of the PAVE PAWS software. This information includes the education
and work experience of the personnel as well as experiences in methods of access,
programming languages and previous experience on related projects. Specific
information obtained from this form is representative of the experience of the
maintenance personnel with each tool or technique, each programming language,
each operating system, and each of the specific applications of the softwar2 for
PAVE PAWS.

3-5

v Bams Ll e U C A S AR DI - A e e A s e

Ty N

This form was filled out once at the beginning of data collection and again
at the end by each analyst/programmer. It briefly classifies his/her background.

Examples of a completed PEP and a completed coding form are depicted in
Figures 3.1 and 3.2. The instructions for completing this form along with a

blank form and coding sheet are given in Appendix A.

3.4.3 CPCG Description Form (CDF)

The CPCG Description Form provides information concerning the
characteristics of the PAVE PAWS software at the CPCG level. Information
provided by this form includes CPCI name, special environmental factors and
development constraints, and size of the CPCG including number of CPCs, number of
INCLUDEd Segments, number of source lines of code and number of machine words of
code.

The data on this form is extracted directly from the following hardcopy PSL
management reports: Code Progression/Durability Matrix, Summary by Program and
Summary by Segments.

Examples of a completed CPCG Description and the associated coding form are
depicted in Figures 3.3 and 3.4. The instructions for completing this form along
with a blank form and coding sheet are given in Appendix A.

A supplementary coding form was designed to record the status of each CPCG at
different points in time. This is called the CPCG Status Coding Form. This form
was utilized to record the CPCG version release history by version
identification, size and the date last change was made. An example of a
completed form is depicted in Figure 3.5.

3.4.4 (PCG Maintenance Activity Form (CMAF)

This form is used to record the maintenance activity performed for each
approved DR. Data is recorded at the CPCG level. When a DR is initiated which
requires software changes to more than one CPCG, additional forms must be
completed. The data provided by this form includes the type of maintenance

3-6

S e i s e e s A AN

[T R AP

PROGRAMMER EXPERIENCE PROFILE

PERSONNEL 1D__FLASTNA

NAME_FIRST LAST NAME AGE_34 DATE_19 AUG 8
OROJECT PAVE PAWS JOB TITLE Chief, S/ Config, Mgt.
POSITION_0-3 GROUP (DIVISION) ADQ
A. EDUCATION (IN YEARS)
HIGH SCHOOL __ 4 YEAR GRADUATED__ 1965
COLLESE 7
OEGREE DEGREE YEAR MASOR LOCATION
AA. 1967 MATH Ventura College, CA
8.4, 1969 MATH _San Clego State, CA _
» COMPUTER SCIENCE CQURSES__ 2 ¢ COMPUTER SCIENCE CREDIT MOURS
p

¢ COMPUTER SCIENCE SEMINARS TAKEN

w

WORK_EXPERIENCE
YEARS WITH COMPUTERS
YEARS IN [NOIVIDUAL EFFORT
YEARS IN TEAM EFFORT
% YEARS IN SUPERVISORY CAPACITY
TARGET LANGUAGE(S) NAME
TARGET MACHINE(S) NAME
TARGET OPERATING SYSTEMS (NAME) ——

T. SPECIFIC EXPERIENCE (RESPONSE IN YEARS UMLESS OTHERWISE INDICATED}

sls|m Iﬁ

ot et

YRS.

2
=

Us]
<
oo
faa]
=

FF
FFFE

1. TECHNIQUES 2. PROGRAMMING LANGUAGES
STRUCTURED PROGRAMMING 2 JOVIAL 2.
POL 2 ASSEMBLER B !
41P0 . FORTRAN P
TOP-DOMN DEVELOPMENT 2 coBoL i
psL 2 ALGOL .
PRE-COMPILERS 2 ¥ 0
CHIEF PROGRAMMER TEAM _ 2 PASCAL -
OTHER 8 OTHER i

3. (QPERATING SYSTEMS
MACHINES QPERATING SYSTEMS 1S,
CYBER 174 NETWORK QPERATING SYSTEM 2

4. DROGRAMMING APPLICATIONS (YEARS)
2USINESS]

SCIENTIFIC/MATHEMATICAL (]
SYSTEMS PROGRAMMING I
REAL-TIME SYSTEMS _
DATABASE APPLICATIONS ']
OTHER (SUPPORT. e.9., PSL, DATA 2

REDUCTION, MISC. SUPPORT)

FIGURE 3.1 EXAMPLE OF COMPLETED PROGRAMMER PROFILE

3-7

¢ IO Erer s SN I 3 o oo AU AN TVIOUIMIIIIED 1 -, 4=, . . en ¢ 1 A G 2, 5o Lo OTALS AT i S TR

PROGRAMMER EXPERIENCE PROFILE CODING FORM

persoNneEL 10LF [LJALS [T Al 1-7

nuelE LR s e Al mlmel T I 11 [J8-2
aGE [3]4 28-29
oate 81] ola f1j9] 30-35
progECT [P 1A L v Lplabe [s| L | | | 36-50
o TITElc i Lile (rt ks Lolely i malete dofrl T { Is1-70
POSITION{ gl -{3 71-75
GROUP (DIVISION) |A 76-78
EDUCATION COLLEGE [] 79
HIGH SCHOOL | 4] 80
YEAR GRADUATED [6]5] 1.2
DEGREE DEGREE YEAR MAJOR
3-11 Ald 617 MIAT 1o
12-20 AT £ MIATT |
21-29
30-31 # COMPUTER SCIENCE COURSES
32-33 0| # COMPUTER SCIENCE CREDIT HOURS TAKEN
34-35 # COMPUTER SCIENCE SEMINARS
WORK EXPERIENCE 36-37 # YEARS WITH COMPUTERS
38-39 |410 | % YEARS WITH INDIVIDUAL EFFORT
40-31 |4lo | ¥ YEARS IN TEAM EFFORT
42-43 0| % YEARS IN SUPERVISORY CAPACITY
TECHNIQUES LANGUAGES
STRUCTURED PROGRAMMING 44-45 JOVIAL 2_l0-61
POL 46-47 ASSEMBLER g_62-63
HIPO 48-49 FORTRAN 0 _64-65
TOP-DONN DEVELOPMENT 2| 50-51 coBoL 0_g6-67
PSL 21 52-53 ALGOL ; 0 '68-69
PRE-COMPILERS 2] 54-55 pL/T » 0 170-71
CHIEF PROGRAMMER TEAM 2| 56-57 PASCAL 8 {7273
OTHER 0] s8-59 OTHER 0 {74-75
PROGRAMMING
APPLICATIONS
BUSINESS of 1-2
SCIENTIFIC/MATHEMATICAL of 3-4
SYSTEMS PROGRAMMING 5-6
REAL-TIME SYSTEMS ol 7-8
DATABASE APPLICATIONS Eg_ 9-10
oTHers | | 11-12
OPERATING
MACHINES SYSTEM YEARS
13-28 i Nlals L
29-44 |
45-60 B I

FIGURE 3.2 EXAMPLE OF COMPLETED "PEP" CODING FORM

3-8

P v RN . o v FART I Y et b clfiodiiafial o

Mo S EG e A

CPCG DESCRIPTION FORM

PSL Date: 14 August 1981
Library Level: ALL
Data Source: PRG

Software Identification:

CPCI PTAC CPCG COMM

Special Environmental Factors of the Component:

a) Special Display Y h) Concurrent Development
of ADP Hardware

b) Detailed Operational Re-
quirements Definjtion Y i) Time Sharing (vs Batch) y

c) Change to Operational j) Developer Using Separate
Requirements N Facility N
d) Real Time Operation Y k) Development on Opera-
tional site N
e) CPU Memory Constraint Y 1) Development on other
than Target System N
f) CPU Time Constraint Y m) Development at more
than one site N
g) First S/W Developed
on CPU N n) Programmer Access to
Computer Y

General Program Information:

Number of CPCs 15
Number of Segments 281
Number of Source Lines 9042
Number of Machine Words 7971

FIGURE 3.3 EXAMPLE OF COMPLETED CPCG DESCRIPTION FORM

3-9

b ST o 2 402 1 v e

CPCG DESCRIPTION CODING FORM

SOFTWARE 1DENTIFICATION cpel [PITTRTC 1- 4
cecg LLIOIM M 11 5-13
SPECIAL ENVIRONMENTAL FACTORS
SPECIAL pISPLAY | Y| 14
DETAILED OPERATIONAL REQUIREMENTS DEFINITION | Y| 15
CHANGE TO OPERATIONAL REQUIREMENTS n 16
REAL TIME OPERATION |y} . 17
CPU MEMORY CONSTRAINT | y| 18
CPU TIME CONSTRAINT n 19
FIRST /W oeveLopeo ox cpu [y 20
CONCURRENT DEVELOPMENT OF ADP HARDWARE | y | 21
& VIME SHARING (vs BATCH) | | 22
=) DEVELOPER USING SEPARATE FACILITY | n| 23
OEVELOPMENT ON OPERATIONAL SITE | N| 26
DEVELOPMENT ON OTHER THAN TARGET SYSTEM | | 25
PROGRAMMER ACCESS TO COMPUTER E 26
PROGRAM SUPPORT LIBRARY DA(A
PSL DATE LEVEL DATA SOURCE NUMBER OF NUMBER OF SOURCE SIZE 0BJECT SIZE
PROGRAMS SEGMENTS
Lsl { ofs] !l“l Wlf] [e] s} o2 s 1] ﬂj PP]
22-32 33-35 36-38 39-41 42-45 46-51 52-57

FIGURE 3.4 EXAMPLE OF COMPLETED CDF FORM

LL-€

CPCG STATUS CODING FORM

cpcg 1-4 PSL DATE 5-10

CODE PROGRESSION
PRG VN CPT VN INT N FIX N TST VN FRZ VN DEL VN

CH P S TR el

CODE DURABILITY
PRG 60-66 CPT 67-73 INT 74-80 FIX 81-87 TST 88-94 FTZ 95-101 DEL 102-108

(] 0210 1 el 21Flold olojo o 1ioltilolo falzlstolc lal nlzls nz]
| A 10 |8j1]3 1ol |2 L%) 4 1loh 0
109-114 115-120 121-126 127-132 133-138 139-144 145-150

FIGURE 3.5 EXAMPLE OF COMPLETED CPCG STATUS CODING FORM

activity being performed, the precision of the design specifications for that
activity, and the complexity of the maintenance activity. Also provided is data
concerring how the error was detected and the effort involved in diagnosing it,
the reason and nature for a change in the software, and the effort required in
each phase of the maintenance to make the change or correction in the software.

This form is a vehicle for summarizing the relevent maintenance activity data
contained in the assorted documentation (PCDs, PMRs, MDISs, PDDRs, PCs, DRDB
listing) associated with each DR in each of the PAVE PAWS software version
releases.

Examples of a completed CPCG Maintenance Activity Form and the associated
coding form are depicted in Figures 3.6 and 3.7.

3.5 Data Processing and Summarization

One of the most critical and time consuming functions of the data analysis
procedure was that of processing the raw data to assure that the data was valid,
accurate, meaningful, and in a form suitable for analysis.

The first step in the validation of the data was to review the documentation
associated with each DR to make sure all forms required by the PAVE PAWS
configuration management staff were included and that the appropriate fields had
been filled out. Irn addition, the documentation for each Software Version
Release which incorporated the modified software was reviewed to determine if all
related deficiency reports and supporting data were received.

Procedures were established for processing the collected data depending upon
the form in which it was received. Where the data was contained on non-standard
forms, the data was first summarized onto the three standard maintenance data
collection forms. These forms were revised several times during the data
collection effort to reflect the availability and form of the data. After the
data was summarized and validated, it was transcribed onto standardized coding
sheets which were formatted for each type of form. The data was then entered
into the data base.

3-12

¢+ 80493 COMPONENT MAINTENANCE ACTIVITY FOMR oart 7 November 1980

Lacation of activity Ccpcr _PTAC cres _TRCK ooc/segment DRIT
Matntenance Type: Error Correction 1 Add Capability __2__ Verston felease +_B5

Delete Capadility Optimize/Enhance __

Srief Description of Change to be aade .Ammumnummmmme

was on its ascent or descen
naccurate.

Specification Precision: Very Precise X Precise Iwprecise

Size of Change: Sourcs Code Lines Object. Cade [nstructions

Urgency of Msintanance Activity (i-3) U

Camplexity of Matintenance Activity: Very Complex Complex Mediue Staple X
Very Simple

SECTION A Complete if Meintenance Activity was for Ervor Correction

MEANS OF INITIAL OETECTION - 7 omly for corrections (not Naw Neas.)
- More them one category say be 7 'od

——. &, Hand Processing d. Interrupt Ervor (Code ____) q. Errer Nessage ____
— b. Persoma) Commmication et 0. Incorrect Owtput or Resvlt b, Code Review ____
—. S Infinite Loop e o Mis3ing Output 1. Decummatation Review
— k. Mintensnce croascheck (as 3 result of a change in other softwere) 3. Spacial Oebug Cote ____
1. Other, Descrite .
EFFORT [N DIAGNOSING THE ERMOR - Do nat include effort speat tn inftial detection
a. No. of Runs to Diagmose Elapsad Time (|) !
h. Working Time to Dfagnose: Oays Hours Analysis Seging
c. MNo. of Lines of Code: Added [! Corrected Project Opans
EROR SOURCE
_L 4. Nisintarpretation — Seucified Intarface et e 1+ 08¢k Satup Error — 0. Oporator Ervor
of Spec. lnplemmnted Correctly . computatiosal Error ___ p. Oue te Prier
e Do Incorrect Spec. —— . Softmare Interface 1. Data 1/0 Errar Medification
©. Incomplets Spec. 0 9. Nerduere Interface a. Logic Error e §. Cause Mot Fownd,
7 4. sescifted Fuction Not ___ h. Operating Systes T . Data Dgfinttton Workaround Utes
1splamented Correctly 1. Susport Seftwere " teror e P Other, Explain

SECIION B Camplete if Maintemance Activity wes to make & change.

MATVRE OF cnnk HEM REIRDENT - / those which apply
B o— I():c_uumal) d.___ Structural a.___ Mssion 0, Mardmre
reface or Coments
oL Ngortenmc 5. Engineering Model o Otrer, Exlatn
9. __ Fix Instruction t.___ Other, Explain

€., Softwere (m)

& Change Constants

ERROR CORRECTION AIDED 8Y "ROGAA ATIOTATION? YES___ 10____
SECTIQN C Matntenance Effort Required for Change or Correction
STAGE DATE *PERSONNEL HOURS CPU TIME PERSONMEL ID
Received Forwarded Analyst Progreswer Clerical

[Jasign Effort | i !
| Coatng Effare 1 | Al
{ unit Testing : {

intregation Testing i 35 12 |
, Testing Review . | ! .
Ttnstallation I 1 1 | | 1

* Secord “ours 0 nearest tanth of i hour PCD80075

FIGURE 3.6 EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY FORM

2 s A OIIIEIIINRES - . ok P ARREARRINING 28 O i ARSI (8254 S 2 NG

T

MAINTENANCE ACTIVITY CODING FORM

1-5 pr #lglola [ol3] oave {8Jo[1[1T1d7] s-11

CPCptr|a]c] 12-18
CPCEipRic T 16-19

CPC/SEGMENT -24{LEAVE BLANK IF MORE THAN
8lo]1 J20-24 ONE CPC)
25 MAINTENANCE TYPE 26 VERSION RELEASE [g]5]29-30
27 2] 28
SPECIFICATION PRECISION[y T p] 31-32
URGENCY OF MAINTENANCE] 33 INTEGERS - RIGHT JUSTIFIED
COMPLEXITY OF MAINTENANCE{S | I] 34-35 ALPHABETIC - LEFT JUSTIFIED
NEANS OF INITIAL DETECTION [o>/
E NITIAL DETECTION 38-39

PROGRAMMER ASSIGNEO{ T | [1 [1| 40-46
EFFORT T0 CHANGE[OL 0131 8147-50 [ol1lz]0] s1-54

MANHOURS COMPUTER HOURS, TENTHS
No. OF FILES AFFecTeD | ofo] 1) 55-57
ERROR SOURCE NATURE NEW RE-
OF CHANGE OUIREMENT
s |58-39 [RTT] 64-65 70-71
g]g 60-61 [p |] 66-67 1 72-73
62-63 (P} P} 68-59 [] 74-75
ADDED
DELETED
OR #1-5 CHANGED 6 FILE NAME AFFECTED 7-80
glolalojalcIFirfoInlT]. JE]niD]. INJOJIISTE]

FIGURE 3.7 EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY CODING FORM

Some problems were encountered during the processing of the data which
restricted the amount of analysis which could be performed. The number of
available DR forms completed by the maintenance staff did not agree with the
number of DR entries within the DR data base. Also, the effort expenditure shown
on the Project Control (PC) was not broken down into distinct maintenance phases
j.e. time to detection, corrective design and analysis etc. The PSL data could
not be used due to the lack of traceability of specific maintenance actions
(resolved DR's).

There were approximately 1180 DR's submitted by the 0 & M staff (covering the
period from November 1979 through September 1981) which required action on the
part of the SPA. Of the 1180 DRs, 402 (over 34%) were rejected after analysis for
the following reasons:

No error

Inadequate data collected at time of failure to determine the cause
Duplicate DR

Request for enhancement not currently needed

Inadequate manpower resources available

Inadequate computer resources available

User misuse of the system

000000 O0

As of September 1981, a total of 201 DRs had been resolved; 577 were still
open and were in the process of being resolved by the maintenance staff. Of the
201 resolved DRs, there were only 56 packets which contained complete or near
complete PCD and/or PMR and PC data. The results of the analysis of these 56
maintenance packets are included in Section 4.3 of this report.

3.6 PAVE PAWS Maintenance Data Base

The data base was developed so that it could be used for the two major
functions of:

o Supporting the analysis requirements for this proposed effort.

o Serving as the basis for the development of a large, multiproject
collection of software maintenance data which will be managed and
further expanded by the DACS.

T R O Ry T T Sat i 3t NSRS

The design and compilation of the database considered both requirements.
Since the database will be used to support future study and analysis of the
software 0 & M process, it was essentjal that all available data concerning 0 & M
be included. It was also essential that the database design anticipate the

requirements of future 0 & M data analysis efforts.,

This data base is comprised of seven sequential files. Each file is in a
form which is compatible with Honeywell's commerical Data Base Management System
(DBMS), MDQS. 1t can be readily adapted to MDQS which is currently available on
the RADC H6180 computer system. Al1 that must be done is to develop the high
level interface software (data definitions and data dictionaries) for each of the

sequential files. File/record descriptions are contained in Appendix B of this

report.

Ll-€

FILE NAME

PPPEP
PFDRH
PPMAF
PPCDF
PPCSF
PPPCH
PPSCH

DESCRIPTION

Programmer Experience Profile File
Discrepancy Report History File
Maintenance Activity File

CPCG Description File

CPCG Status File

CPC Change History File

Segment Change History File

FIGURE 3.8 DATABASE FILES

- —-"b-ﬁt

DATA SOURCE

PEP

DRDB
CMAF/SVR/DRDB
CDF/PSL
CDF/PSL
CDF/PSL
CDF/PSL

AP AT e P PRI, 4 o

SECTION IV
STUDY RESULTS
4.1 Introduction

This section of the report contains the results of the analysis of the
information collected. The purpose of this analysis is to determine the effects
of the use of MPPs and SE tools on the 0 & M phase of the software life cycle.
The amount of information analysis which could be performed was very dependent
upon the quantity and quality of the input data. The first subsection presents
the results of interviews and surveys with the PAVE PAWS maintenance staff as
outlined in Section 3.2. The results of the analysis of the empirical data is
then discussed.

4.2 Summary of PAVE PAWS Maintenance Personnel Interviews

MPP is a general term encompassing a variety of procedures, standards,
programming and design techniques which are considered to improve software
development. Some of these techniques are Top-Down Structured Programming,
Chief Programming Team and others. These are considered to improve software by
making it readable to other programmers, easier to understand and debug, and
helping to standardize the development process.

SE Tools are those tools used in the practical and methodical application of
science and technology in the design, development, evaluation, and maintenance
of computer software over its life cycle. These tools include specific charts
and diagrams which aid in the design and development of software, and PSLs which
aid in the development, evaluation, and maintenance of software. SE Tools can
also assist the programmer in using a greater variety of Modern Programming
Techniques with greater ease.

In the following sections, the data obtained in the personnel interviews of
PAVE PAWS staff has been organized and presented by subject corresponding to the
following MPP, tool or technique:

LS g Vot

o Top-Down Program Development

o Chief Programmer Team/Librarian

0o Structured Programming (SP)

o Structured Walkthrough and Reviews

o Independent Quality Assurance/Testing
o Program Support Library (PSL)

o HIPO Charts

o Program Design Language (PDL)

0 Precompilers

4.2.1 Top-Down Program Development

Top-Down Design and Program Development is a technique employed in the design
stages of a project which implies an ordering to the sequence of decisions which
have to be made in the decomposition of a software system. Essentially, the
effort is examined in the most general form first, followed by stepwise
refinements which allow for a better understanding of the general requirements of
the project before tasks and problems need to be examined.

In the PAVE PAWS maintenance environment, the Top-Down approach considered
two areas of activity: 1) maintenance of software designed using the Top-Down
approach, and 2) the generation of new software.

A11 personnel were familiar with the Top-Down concepts, having been exposed
to it either through previous experience, education (college or technical
school), or Air Force training programs. Without exception, the PAVE. PAWS staff
felt that the use of the Top-Down approach during the generation of the original
software contributed to the maintenance process by 1) making it easier to detect
and find errors, 2) reducing the time required to find the error, and 3)
contributing to the ease of program modification to correct the software. Where
maintenance required the generation of software to either correct an error
condition or enhance the system, the staff felt that the Top-Down approach
greatly aided the modification process.

4-2

N

4.2.2 Chief Programmer Team/Librarian

This technique involves the concept of division of labor among the project
members responsible for code development. Three key individuals are required.
They are:

a. The Chief Programmer, who is responsible for overseeing and coordinating
the code development and producing the critical nucleus of the project;

b. The Backup Programmer who is familiar with all aspects of the system and
contributes significant portions of the code;

c. The Librarian who is responsible for maintaining the status of the
program and the test data, updating the source and test data, performing
the compilations and test runs, and coordinating the documentation.

The Chief Programmer Team (CPT) concept is the basis for all software
maintenance activity in the PAVE PAWS environment. The interviews with the PAVE
PAWS staff indicated a firm commitment to the concept and the employment of the
concept in designing the organizational structure of the SPA as well as the
working formats of each SPA Division. In the past, the CPT concept has been
interpreted by some as destroying individual initiative because the concept
ignores the human factor in favor of a finely detailed, regimented, controllable
structure where the product was produced at the expense of individual creativity.
This is not the case with the PAVE PAWS organization. The positive
interpretation of the CPT concept is the pooling of the team talent to accomplish
tasks. In this approach, all team members are contributing their technical and
management abilities. Design work, problem solving and code production tasks are
assigned by the SPA/AD and/or the CRB to specific SPA Divisions based on the
Division's area of responsibility. Within the Division, the Division Chief
functions as a Chief Programmer in assigning the work to a section head, who
performs the function of a lead programmer, or Backup Programmer, for the
specific section. In the accomplishment of specific tasks, all team members
contribute as needed. The team serves as a talent pool. This does not mean that
the individual assigned a task is not responsible for its accomplishment. On the
contrary, the individual has the total responsibility for the task's
accomplishment. '

R

et R WO PN ¢ TN 2N e et M R o WD

Within the PAVE PAWS structure, the observed difference is that the team
members work together. Depending on the problem to be solved, the solution may
require the resources of one or two team members or the entire team. In all
cases, the work produced is reviewed by another team member. Even though this is
mandated by SPA Operating Instructions, it was found that the team members prefer
this approach because it contributes to a better product. Team members also felt
that they benefited from the pooling of talent and the reviews. Their exposure
to the ideas>and critiques of other team members increased their skills and
allowed them to produce better products.

Within the Divisions, the duties of each individual are well defined. Each
division, as well as the entire SPA, knows the steps required for system
maintenance. From the time a problem or a request for enhancement is received by
the SPA, to the time that the problem is resolved, each member is aware of his
individual responsibilities in the maintenance and his contribution to the
overall maintenance process.

As with any organization faced with a maintenance project of the magnitude of
PAVE PAWS, the allocation and use of resources is critical to the project's
success. The PAVE PAWS maintenance personnel feel that the CPT concept is a very
positive factor. The benefits derived from this concept as seen by the PAVE PAWS
personnel are:

o Excellent working environment.

o In an area where resources are limited, the CPT concept makes the best
use of the avajlable resources.

0 Compared to the past experience of PAVE PAWS maintenance personnel, the
amount of effort required for a maintenance modification is reduced.

0 Because of the CPT approach, the maintenance staff feels that there is
less recoding, retesting and errors found in the products produced by the
PAVE PAWS maintenance organization.

In the above, it may be noted that the concept of a project Librarian was not
discussed. At the time of the data collection effort, manpower limitations

prevented the assignment of an individual as a Librarian. Currently, the
Librarian responsibilities are supported by team members and the ADQ.

4-4

A e e e e e v s e eemank et e Wi 5 i e P O U

A e e A man i FORAAT. P4 TS5

G it

x 2

The SPA staff feels that the addition of a Librarian to the PAVE PAWS project is a
priority item.

4.2.3 Structured Programming

SP is basically a set of standards for organizing the control structure of a
set of computer programs where:

a. Each program segment has only one entry and one exit point.

b. Only three basic control structures are needed: Do-While, If-Then-Else,
and Sequence.

c. These basic constructs are augmented with the following practices:
Hierarchial and modular block structures, module size limits, indented
code, and meaningful variable names.

SP is viewed by the PAVE PAWS staff as one of the more important techniques
in the maintenance process. While other practices or tools benefit some specific
0 & M activities more than others, SP benefits most 0 & M activities in that SP
contributes to the enhancement of the software quality factors of traceability,
consistency, simplicity, modularily, self-decriptiveness and expandability. In
the maintenance process, the PAVE PAWS staff feels that SP makes it easier to
find and correct errors. In addition, the staff felt that SP reduces the effort
needed to implement the modification.

The PAVE PAWS staff was asked to rate the characteristics of SP and their
contribution to the maintenance process. The following characteristics were
rated highly:

o Indented Code

0 Absence of GOTO's

0 Modular Programming

o Simplictiy of Programmming Style
0 Enhanced Readability of Code

4-5

| R I AINRIE SN - Horaidis e o we, NSRS NLEF 355 (T ISIOD oo NPty BRI o0t 2 e 2

They also felt that SP aided changeability and maintainability, simplified
the testing process, and improved accountability. The only complaint was the
size of a program module. They felt that a rule that limited a module to one
computer listing page (50-55 lines of source code) could be too restrictive in
some cases and could create some confusion for someone reviewing the code if a
function were spread over two software modules. PAVE PAWS guidelines are 50-55
Vines per module with an in-house procedure available should a larger module size
be required.

In the maintenance environment, SP 1is used for all languages including
Jovial, Fortran, and Assembly. Where pre-compilers exist, all code is structured
following SP practices--with no deviations permitted. Even if the computer does
not have a pre-compiler, the concepts are employed in the generation of new code
and the modification of existing code.

4.2.4 Structured Walkthrough and Reviews

Design Walk: rpugh and Review

This te_.nique is employed primarily after a design is fairly complete and
involves a meeting between the user and various members of the project, where a
review of a proposal modification is examined for technical rather than
managerial purposes. The review is formal and multidisciplinary in nature and
often involves hypothetical inputs.

Code Walkthrough and Reviews

This technique is employed during and after the actual code production and
involves a meeting between the various project personnel. Like the design
walkthrough, this review is primarily technical rather than managerial in nature
and is concerned with error detection and not necessarily correction, which takes
place after the walkthrough. Hypothetical input is often used, and errors
discovered by this technique can be corrected before computer time is used,
realizing a cost reduction.

4-6

r———— - om .- R RPN o = " eprima A8 o RS AN L

In the PAVE PAWS maintenance environment the overriding concern is to
maximize the uptime of the operational system. Even with resources like a backup
computer, any potential modification must undergo extensive review prior to
changing the operational system. If a modification is needed, it must be correct
and complete when it is initially introduced into the operational system. The
first step in the validation process of any potential modification is the
“Walkthrough and Review".

After receipt of a DR by the Configuration Review Board (CRB), each step of
the maintenance process is subject to review.

The PAVE PAWS staff feels that Walkthroughs and Reviews are an absolute
necessity. Regardless of whether they are formal reviews involving the CRB on
Division Walkthroughs and Reviews of a proposed design change or an actual code
modification, each step is subject to review by the SPA, not only by a formal
procedure but in fact by staff preference. The staff is divided on whether or
not there is a conflict between timely production and proper maintainability.
However, the entire staff feels that the correctness of any change is the primary
concern. One staff member put it this way: "It is better to be right the first
time and any process that gets me there {is worth the time". From the staff
comments, they feel that walkthroughs and reviews provide more than the obvious
benefit of correctness. The pooling of talent, in a formal or informal review,
produces a better product and increases the capabilities of the participants.

4,2.5 Independent Quality Assurance/Testing

The ADQ has the responsibility for the independent test and verification of
all proposed modifications to the PAVE PAWS software. ADQ has the prime
responsibility for insuring that proposed modifications to the PAVE PAWS System
perform as expected. In this role, ADQ acts as both "indepepdent test and
analysis group" and the "quality assurance group".

The Independent Testing Group is a project group within ADQ and is not
involved with the design or implementation phase of the change. They are
responsible for testing the proposed software release's accuracy, and designing
tests to do this. Since the group is not involved in the design or the

4-7 i

‘o 4 cadtehainner S At R - M. L R SN S e Fiu ke S Pt R TR b B VRN

R T e o ———— — = . e e e S %o WL e e

development of the change, the tests produced are objective and complete in
scope, programming time is not consumed, and more thorough testing can be
accomplished. in a shorter period of time.

A separate ADQ testing activity causes sections to prepare better and more
complete products because they are aware that ADQ reviews everything in detail
prior to committing time for DT & E. The following comment was made by AD and
other Branch personnel, "We know that ADQ is going to check for completeness and
accuracy, so we might as well do it right the first time". ADQ's basic
philosophy compliments the attitude of the rest of the SPA in approaching
independent testing, "Assume nothing works until ADQ proves it to itself".

The Independent Quality Assurance Group is responsible for planning a
systematic pattern of all the action to be taken to insure that the product
conforms to the user's requirements. The efforts of the Independent Testing
Group fall under the supervision of this group, in addition to the testing of the
design and completed system. The independence of this group from the actual
design and development phases assures the same objectiveness and completeness as
the Independent Testing Group.

The ADQ provides central confijuration control of all PAVE PAWS system
software and documentation. It maintains and contrnls electronic and printed
source for all software under configuration control. ADQ acts as adwministrative
control point for all software and documentation change actions throughout all
stages of maintenance. ADQ provides and maintains a central library of forma}
system documentation, vendor publications, and educational and instructional
materials. In addition, they develop and maintain all system support software
including Real Time Sisulation, Target Scenario Generation, Data Reduction, and
PSL software.

Within the quality assurance cycle, the ADQ assures the accuracy and
completeness of all proposed and finalized modifications to the PAVE PAWS system.
From the SPA management standpoint, this configuration control and quality
assurance are felt to be critical. The assignment of the ADQ as the focal point
for quality assurance reflects management's view of the importance of quality
assurance. Complimenting this view, the SPA staff feels that the

4-8

R bl

AP M

benefits received more than compensate for any additional effort required and
they willingly support the quality assurance process.

4,2.6 Program Support Library

The PSL is a programming tool designed to provide extensive data collection
and reporting capabilities for use by management in making timely assessments of
status, specifically on error correction and changes being made to the PAVE PAWS
software. In addition, the PSL was designed to support and enforce Top-Down
Structured Design techniques and support an orderly progression of software from
a development environment through integration and test to a delivered product.

0f all the tools used by the PAVE PAWS staff, the PSL is considered by
management to be the most valuable. In an environment where configuration
control is a necessity, the PSL provides some of the most essential ingredients
required for management and control. The PSL is used for compilation, testing
and as a code control mechanism. For Jovial source code, the PSL is the frontend
mechanism for utilizing the software. Because of this, management is able to
track this software at all times.

Some of the programmers did not like the requirement to use the PSL, and felt
that it slowed down the maintenance process and increased the effort. However,
they also expressed certain positive aspects, such as availability of copies of
the previous source code, current software status, software development level,
compilation and load streams, etc.

Currently, the source code for the MODCOMP computers is also maintained in
the PSL on the Cyber. This requires the modification of the source language
using the PSL on the Cyber, the creation of magnetic tapes containing the
modified software, and the transfer of the tapes to the MODCOMP computer where
the actual compilations, loads and testing are done. It seems reasonable that
the extra steps required in this process would produce negative comments by the
SPA staff involved. The unexpected comment from these same ADQ people is, "We
1ike the PSL and its capabilities. We would prefer that the MODCOMP have its own
version of the PSL and eliminate the software transfer currently needed".

4-9

—— M asts Al A AR - ;- B L L T T R N S S FC LT BT PN

Overall, while the PSL is considered a good product by the PAVE PAWS staff,
there are several areas of the PSL which they feel could be better. The PSL
documentation, particularly the user's manual, is considered poor. The user's
manual shows how to transition software up and down the various levels of
development (i.e. PRG, CPT, INT, FIX, TST, FRZ, DEL); to modify, compile and load
a software module; and request a 1isting (Report) of the status of all modules in
the PSL. However, the staff feel that additional useful reports are available
based upon other undocumentated input parameters used by the PSL as part of the
above processes. In the user manual, there is no indication of how to produce
additional reports other than the library program segment summary statistics and
the code progression/durability reports. The documentation reguired for the
PSL, which would allow the staff to add capabilities to the reporting process, is
non-existent and they feel that they would have to list and laboriously review
the PSL source to make any modifications.

4.2.7 HIPO Charts

HIPQO Charts consist of Hierarchy Charts, a set of blocks, similar to an
organization chart, showing each function and its division into subdivisions and
the corresponding input-process-output charts, which show the inputs and outputs
and the processes joining them. Since these diagrams are visual, they are easier
to understand then narrative documentation, contributing to both design and
documentation and aiding code production.

A11 discussions with the PAVE PAWS staff regarding HIPO charts produced the
following response, "What are they". Of all the documentation produced on the
PAVE PAWS system, HIPO's have the least, if any, use to the maintenance staff.
Their major criticisms of the provided HIPO's fall into two categories; they
don't go far enough to define software structure and control flow, and they are
unclear.

HIPO's do exist in the A" and "B" Spec documentation and sometimes in the
"C* Specs. For HIPQ's to be useful for maintenance purposes they must start at
the highest level and proceed to the POL and code levels. They must show the
downward progression clearly and provide an upward referencing capability. A
significant observation by the PAVE PAWS staff was made concerning the contents

4.10

- QM. -

e e e e gt Al

¥
ad

&

of HIPO's. They feel that the original HIPO's were generated to show the
direction in which the software and system development would proceed. The key to
this statement is the words "development" and "would". In the maintenance
process, a HIPO only has importance if it relates the level and functional
category of the software to a specific CPCI/CPCG/CPC. While intent is helpful,
specifics are required when tracking a problem through the system. The contents
of HIPO's with better and clearer verbiage, a more concise titling approach which
would allow a viewer to determine the HIPO's position in the system structure,
and the inclusion of specific references to CPCG's, overlays, programs and CPC's
are needed for HIPO's to be of use to the maintenance environment.

4.2.8 Program Design Language

The PDL is a design tool used to communicate the concept of the software
design in necessary detail, using a form of formal, structured English, and is
implemented as a separate language in the PAVE PAWS PSL.

The use of PDL is an area which has caused much reflection by the PAVE PAWS
maintenance staff. As with HIPO's, PDL is a product which exists in two
environments; development and maintenance. When creating new software or
modifying existing software, a PDL is a very useful tool in specifying the
software to be created. In the maintenance environment, emphasis is placed on
finding a specific location in the software where maintenance needs to be
performed. The PDL can be helpful in finding a problem location; but to be
helpful, it must be up-to-date. If there is not a one-to-one relationship
between the code and the PDL, the effectiveness of the PDL is considerably
diminished. PDL existing as an entity separate from the source code slows the
tracking process. The PAVE PAWS staff feels that the PDL would be more useful if
it were contained in-1ine with the source code. They feel that would reduce the
time required to find a problem and make it easier to specify a solution.

There was one additional comment by the PAVE PAWS staff which they felt was
very important regarding PDL, "PDL is not a substitute for good commenting within
a source listing". They felt that PDL is a guide, a good design tool and an
effective mechanism in the creation of software. However, when software is being

4-1

T e L L R I P e A XNV YR7E S

reviewed for correction or possible extension, good commenting is required to
better understand the function of software statements.

4.2.9 Precompilers

The precompilers used in PAVE PAWS were designed to translate Structured
Programs into compiler compatible statements. This enabled the use of certain
constructs, not available in the JOVIAL and FORTRAN languages, to be implemented
in the development of the software and the production of code which is structured
but not necessarily coﬁpiler-compatib\e.

The PAVE PAWS staff do not feel that the mere existence of a precompiler
insures better code or reduces the time required for maintenance activities.
Having the precompiler permits the use of structured programming concepts which
they feel do contribute to a better product and reduce maintenance time. The
advantages of having the precompiler that were cited by the PAVE PAWS staff are:

o Ease of Programming
0 Structured Code

o Indented Listings

o Less Experienced Programmers Produce Better Code |

o Consistency in the Software being Maintained

Staff members at all programming experience levels prefer the structured
approach to coding permitted by a precompiler. Without exception, they felt that
the use of the precompiler substantially contributes to maintenance and in
particular supports path analysis, ease of code segmentation and software.

4.3 Empirical Data Summary

This subsection contains a short description of the processing of the
software DR's; the contents of the DR's recorded by the PAVE PAWS maintenance
staff from November 1979 through September 1981; and an analysis of the PAVE PAWS
error data.

4.3.1 Introduction

As of September 1981, 577 (49% of the total) DRs were still open and in the
of the 201 (17%) DRs which
had been resolved, approximately 55% (110) were for system enhancements (such as
adding a new capability or refining a display format) and 45% (90) were for error
correction, either to the documentation, source code or system specifications.

process of being resolved by the maintenance staff.

Responsibility for software maintenance has been delegated to five different
sections as described in Section II, PAVE PAWS Maintenance Organization.

The distribution of DRs by responsible section is depicted in Table 4.1.

TABLE 4.1 DR DISTRIBUTION

RESPONSIBLE #DR's #DR's
SECTION GENERATED ACCEPTED

SYSTEM 124 87
TACTICAL 699 460
RADAR 164 115
ANALYSIS 49 37
QUALITY ASSURANCE 144 79

1180 778

#DR's #DR's
RESOLVED OPEN
19 68
95 365
46 69
10 27
31 48
201 577

Table 4.2 contains information on the assigned CPCI's per section of the PAVE

PAWS maintenance staff.

4-13

AU TG o 5k 7l i NI 557 It TS5

T i | IV, P RLOSRC- ~ et Y

TABLE 4.2 CPCI ASSIGNMENTS

RESPONSIBLE CPCI ACRONYM LONG-NAME
SECTION

o SYSTEM 1 PPOS PAVE PAWS Operating System
o TACTICAL 2 PTAC TACTICAL SOFTWARE
0 RADAR 6 PRCL RADAR Control Software

7 Signal Processor Software

8 Receiver/Transmitter Test Soft.

9 Deptol Module Test Station Soft.
o ANALYSIS System Analysis
o QUALITY 3 PSIM Simulation & Target Scenario

ASSURANCE Generation
4 PPSL Program Support Library
5 PDTR Data Reduction
10 Miscellaneous Support

4.3.2 Maintenance Forms Generation Procedure

4.3.2.1 Maintenance Packets

A maintenance packet is a set of documents and forms used by the PAVE PAWS
staff to record and track changes to the software and consists of the DR, PMR,
the PCD, and the PC (see Section 2.4). Only those empirical data for which a
fairly complete packet was received were examined. This included approximately
56 packets that contained complete or near complete DR, PCD and/or PMR and PC
forms, and, another 28 that contained less complete information which included
the DR and PC data. The first mentioned packets were required to trace a
suspected or known error through its maintenance cycle to the final closing of
the DR. The 2nd packet is used for some analysis correlation. This number does
not represent the entire number of accepted DR's and subsequent maintenance
actions but one can gain valuable insight into an analysis of maintenance
activities overall.

Those data that are being utilized for analysis are distributed over CPCI's
as shown in Table 4.3.

TABLE 4.3 Distribution of Maintenance Packets Examined

CPCI # PCD/PMR FORMS # DR/PC FORMS
PPOS 1 6
PTAC 2 22 22
PRCL 6 28 1
TOTAL 56 28
4-14

R A A I SN SISO, U Y v B N S SABRIPE I . . - - e e A R imi e ot

Wt A ¥

4.3.3 Data Distributions

This subsection summarizes the data from the Maintenance Packets and
includes narrative and tabular descriptions of changes by type and manhours
expended, manhours by change, distribution of lines of code produced, error
distribution with respect to means of detection, and error distribution with
respect to error source. Tables presented illustrate the effort required for
error correction and enhancement for each Computer Program Configuration Item

(cpcI).

4.3.3.1 Productivity Data

Table 4.4 contains data on the number of software changes that were made,
where manhours expended for making the change were provided. A change is defined
as any maintenance action that was performed on the system and is comprised of
one of the following:

o error correction
0 enhancement

o documentation correction

Using the data from Table 4.4, the average number of manhours per change and
the average number of changes per 100 manhours were calculated and are
illustrated in Table 4.5.

Of the total 1710 manhours recorded, almost 50% of the time was spent making
changes to PTAC, the Tactical Software. But this CPCI only accounted for
approximately 30% of the total number of changes. Also for this CPCI, the
average number of manhours for correcting an error was very close to the average
number of manhours for implementing an enhancement (67 vs. 50, respectively);
whereas, for CPCI 1, the PPOS, the difference in manhours was much greater (20

vs. 93).

The reason that the manhours expended in error correction in PTAC (CPCI 2) is
considerably larger than the other two CPCI's was examined. The data shows that

4-15

LaTIREN . - ot EREAESTHE RNV YE T PN

g i e B Lt S

9Il-p

TABLE 4.4 CHANGES BY TYPE AND MANHOURS EXPENDED

Changes Manhours
Number/Type Number/Type
cPCl Total Number Errors Enhance Doc. Total Number Errors Enhance Doc.
PPOS 1 7 2 3 - 505 39 466 -
PTAC 2 15 6 8 1 813 402 403 8
PRCL 6 26 17 6 3 393 202 186 5
Totals 48 25 19 4 1710 643 1054 13

v e e s

L~y

TABLE 4.5 MANHOURS BY CHANGE

. Pl ' Total Change Type]7
é i Error i Enhancement | Documentation |
. PPOS 1 | !
; Average Number of: | | ,.
i e Manhours/Change 72 20 ; 93 - i
'\ ¢ Changes/100 Manhours 1 5 I 1 - |
N
[S— 4™
i ! 7 R
k PTAC 2 ‘ ‘
1 Average Number of: i ; \
i ¢ Manhours/Change ; 54 67 i 50 8
} e Changes/100 Manhours i 2 4] 2 i3
| } !
‘L 1
. PRCL 6
] Average Number of :
‘ e Manhours/Change 15 12 31 2
| s Changes/100 Manhours 7 8 3 60
I
| | 1
; —
[;
i Totals ‘
‘ Average Number of: |
l o HManhours/Change 47 33 58 5 1
| ¢ Changes/100 Manhours 3 15 2 37 I
1

l

> T gy

one error correction performed in CPCI 2 reported a manhours expended which was
six times larger than the next largest reported manhours expended and accounted
for 80% of all manhours expended in error correction for this CPCI. Eliminating
this maintenance action, for CPCI 2, the adjusted total average number of
manhours per change equals 35 and the average number of manhours per change in
error correction equals 16.

Analysis of these new figures with respect to the complexity of a change
leads to an interesting observation. There seems to be a direct correlation
between the figures presented in Table 4.5 and the complexity of the change
performed. For the most part, changes made to PRCL {CPCI 6) were simpler than
changes made to PTAC (CPCI 2) or PPOS (CPCI 1). A ranking of the CPCI's in order
of increasing change complexity results in the order PRCL, PTAC, and PPOS. This
also happens to be the ranking for increasing manhours per change for both error
correction and enhancement.

Productivity Measures

The following productivity measures were calculated and are presented in
this subsection:

o Effected lines of code distribution by CPCI

o Lines of code effected by manhours expended

0 Effort required for each 1000 lines of code

o Lines of code generated/month

The distribution of effected lines of code (LOC) by language and CPCI is
presented in Table 4.6. Below is a discussion on the calculation qf the column

titled "Adjusted LOC".

Lines of Code Conversion

For this analysis, the basis of a measure of LOC is Assembly source LOC.
Hence, Higher Order Language (HOL) source LOC is converted to an equivalent
number of assembly LOC.

4-18

s e - SR e N e R S o DAY

R T

6L-t

TABLE 4.6 EFFECTED LINES OF CODE DISTRIBUTION
HOL ASSEMBLY JCL DATA COMMENTS

cPCl LANG LOC ADJUSTED LOC LANG L0C
PPOS 1 PASCAL COMPASS

Error Correction ~ - - - - -

Enhancement 12 90 23 14 0 0
PTAC 2 JOVIAL COMPASS

Error Correction 37 130 - - 3 6

Enhancement - - - - - -
PRCL 6 IFTRAN ASSEMBLY

Error Correction 51 230 136 0 0 50

Enhancement 52 234 19 0 0 24

e

For the conversion of HOL LOC to Lower Order Language (LOL) LOC the
following assumption is made. A one-to-one relationship exists between
machine executable dinstructions and LOL instruction. That is, one LOL
jnstruction will perform a single operation (map to one operation code). It
is realized that an LOL instruction can generate more than one machine word
Tocation, as often occurs in multiple operand instructions or microprocessor
instructions, but there is still only one operation performed. An LOL
instruction may also generate an operation code which involves a macro.
However, assuming this macro is also available to the HOL compiler, this is
still considered to be only one operation and hence one LOL instruction.
Based on this definition, the LOL language can be used as a basis for LOC
generation. That is, we can convert HOL LOC into LOL LOC via a
multiplication factor. This will eliminate the bias that results when using
this metric for determining productivity, where no distinction is made
between HOL and LOL source LOC (JUNE78). It should be realized that this
conversion factor varies within compilers of the same language and from HOL
to HOL and should optimally be determined at the users site. This was not
possible within the scope of this effort, and therefore a literature search
was initiated to establish a conversion factor that best fits the PAVE PAWS
environment. These conversion factors or expansion ratios are presented in
the following table.

TABLE 4.7 EXPANSION RATIOS (JUNK79)

Language Expansion Ratio Average Ratio
FORTRAN(IFTRAN) 4-5:1 4.5:1
JOVIAL 3-4:1 3.5:1
PASCAL* 7-8:1 7.5:1
COMPASS(ASSEMBLY) 1:1 1:1

* An expansion ratio was not available for this language and was assumed
to be the same as PL/1

An average of the limits was used in this analysis instead of the upper
or lower limit. These figures are substantiated in (RCAP75).

A productivity measure was calculated using the adjusted LOC for three CPCIs
and is illustrated in Table 4.8. The total number of LOC effected was calculated
from the data in Table 4.6 by adding the adjusted LOC, Assembly LOC, and JCL.
Comments were not included. The total number of manhours expenaed differs from
the data contained in Table 4.4. This difference occurs because this
productivity measure (i.e. average number of manhours expended per LOC effected)
could only be calculated when both the number of LOC effected and number of
manhours expended were available. -

4-20

TS G . . o et mes . e el e e ad .

————

Le-v

CPCI

PPOS 1
Error Correction
Enhancement

PTAC 2
Error Correction
Enhancement

PRCL 6
Error Correction
Enhancement

TABLE 4.8 PRODUCTIVITY HEASUREMENTS1
TOTAL NUMBER LOCZ TOTAL NUMBER OF
EFFECTED MANHOURS EXPENDED

127 298
133 402
366 161
253 43

AVERAGE NUMBER
MANHQURS EXPENDED/
LOC EFFECTED

2.4

3.0

0.4
0.2

NOTES: ! This table contains data on only those changes for which both number of LOC effected
and manhours expended were available.

2 7otal LOC includes adjusted LOC, Assembly LOC and JCL

From this table it 1is also possible to compute the effort required in
manhours for each thousand lines of code. Figures for enhancement and error
correction are presented in the following table:

TABLE 4.9 MANHOURS PER 1000 LOC

CPCI SIZE ENH CODE/MANHOURS CORRECTED CODE/MANHOURS
1 31K 2350 --
2 100K -- 3030
6 125K 170 440

Another means of descr 'bing productivity is a function of the LOC generated per
manmonth of effort (Table 4.10). For comparison and completeness, the above
figures converted using a figure of 173.3 manhours per manmonth.

TABLE 4.10 LOC GENERATED/MONTH

CPCI LOC/MAN-MONTH FOR ENHANCEMENT LOC/MAN-MONTH FOR CORRECTION
1 74 -
2 - 57
6 1020 394

The data in these two tables (i.e. Tables 4.9 and 4.10) illustrate that
productivity, for enhancements, for the PAVE PAWS Operating System (CPCI 1) is
considerably lower than for the radar control software (CPCI 6). This
observation is consistent with the findings of Jones (JUNE78) and Zelkowity
(ZELK78) where they concluded that productivity was higher for application
software than for operating system software, because of the increased complexity

of the operating system.

The wide discrepancy between the error correction productivity figures for
CPCI 2 and CPCI 6 is attributable to the effects of the one extreme data point
discussed previously. One error problem in CPCI 2 resulted in a manhour
expenditure rate which was five times that of the next worst case encountered in
error correction. Deleting this data point from the calculation results in an
error correction productivity figure of 266 LOC/manmonth, a figure much more
consistent with the 394 LOC/manmonth computed for CPCI 6.

4-22

ey St L TRV I AL SV SRR © PSRV e s

iy
[T VI

In analyzing the data an interesting observation was made. When a
considerable number (>20) of lines of code were changed (added, deleted, or
modified either for an error correction or enhancement), the manhours required
did not increase proportionately. That is, the number of manhours per LOC
decreased with an increase in the LOC changed. This may imply that there is an
initial cost in the change process which must be paid regardless of the type or
extent of the maintenance action. This may be an acclimation cost, directly
analogous to a learning curve on a new computer system where productivity is low
initially and improves substantially once one becomes proficient with the
system. Since for the most part, changes are independent of each other, this
learning cost may have to be paid for on each maintenance action performed
(regardless of enhancement or error correction).

4.3.3.2 Measurement Data

The maintenance activities of the PAVE PAWS system have been separated into
two basically different categories: the activity necessary to find and correct
an error and the activity involved in enhancing the software. The relative ease
with which these tasks were carried out and the influence of MPPs and software
tools on these tasks is examined in this subsection.

The dictionary def’nes ease as the state of being less difficult or requiring
1ittle effort. Subjectiveily we can relate ease to effort however, in analyzing
the empirical data it will be assumed that there is a direct correlation («)
between amount of time and ease, as follows,

+ time = ¢ ease

+ time = ¢ ease
The ramifications are that simple but tedious changes are grouped into the first
class and are hence interpreted as difficult changes. The reason for

establishing this relationships is that effort will be expressed in the amount of
time to complete a given action and can hence be related to ease.

4-23

R RTINS AN NG SN URIIOT Lsithoin K51 35 s e S it m i ORGP RRREANEIAAI

This section concerns itself with the following four basic measurements:

o effort versus change type
o enhancement
0 error correction
o error distribution with respect to error type
o error distribution with respect to means of detection

Using Table 4.4, it is possible to compute the percent of effort expended for
error corrections and enhancements.

TABLE 4.11 EFFORT VERSUS ERROR CORRECTION/ENHANCEMENT

TOTAL # # % OF EFFORT FOR % OF EFFORT FOR
CPCI CHANGES ERRORS ENHANCE ERROR CORRECTION ENHANCEMENT
PPOS 1 7 2 5 8% 92%
PPAC 2 14 6 8 50% 50%
PRCL 6 23 17 6 52% 48%
TOTAL 44 25 19 38% 62%

This table shows that the percent of effort spent for making enhancements to
the PAVE PAWS software is approximately 61% higher then the percent of effort
spent for correcting errors. By eliminating the previously mentioned extreme
data point for error correction in CPCI 2, the difference is even greater. The
percentages of effort for error correction and enhancement become 23% and 77%,
respectively, by deleting this data point. This leads one to the conclusion
that, on the average, an enhancement is more difficult to implement than an error
correction.

Note that code optimization and capability addition are combined under
enhancement (i.e. changes are subdivided into error correction and enhancement
with additional capabilities grouped under the latter). Also documentation
changes are not included under errors or enhancement, since it is plausible to
assume that these do not severly impact software performance (i.e. a DR may have
been generated solely to correct a documentation error, which must be
distinguished from a software error by our definition).

4-24

R o . 2 R ——— - - e e e s — -

With the present accounting methods used the effort required in finding
errors cannot be readily determined. The total effort expended on a particular
change is reported on the PCF and it is uncertain as to whether or not the effort
expended includes error detection (finding an error).

Table 4.12 depicts the number of occurrences for each error type, for the
most commonly encountered ones. Only the primary error types are presented. For
example, suppose in a numerical computation an overflow was encountered and upon
investigation it is discovered that the equation used in the computation was
incorrect. Since, the primary error is in the specification of the equation the
error will be classified as a specification error. The overflow being only a
consequence or manifestation of the primary error.

Note that this table includes all of the errors examined from the 56 packets
received, whereas Table 4.11 includes only information on those errors for which

the effort expended was known (a PC form was available).

TABLE 4.12 ERROR TYPE DISTRIBUTION

NUMBER OF PERCENT OF
OCCURRENCES TOTAL BY TYPE
CPCI cPCI
ERROR TYPE 1 2 6 1 2 6
SPECIFICATION 2 7 - 100% 78% --
SUPPORT SOFTWARE - - - - - -
FUNCTION INCORRECTLY - 2 1 - 2% 4.5%
IMPLEMENTED
INTERFACE INCORRECTLY - - - - - --
IMPLEMENTED
DATA 1/0 . - - - - -
SOFTWARE INTERFACE - - 4 - - 18.2%
HARDWARE INTERFACE - - 2 - .- 9%
COMPUTAT IONAL - - 1 - - 4.5%
LOGIC - -1 - - 50%
DOCUMENTATION - - 3 - - 13.6%

It is interesting to note that there are no specification errors in CPCI 6,

the Radar Control Software, but that 50% of the errors examined were logic errors
and 18% were software interface errors.

4-25

e AR SR T L TR dr e e

The following Table depicts a distribution based on the means of error
detection and includes only those errors which resulted in a program
modification.

TABLE 4.13 MEANS OF DETECTION DISTRIBUTION
MEANS OF DETECTION 1 2 6

INCORRECT OUTPUT OR RESULT 1
MISSING OUTPUT -
PERSONAL COMMUNICATION 1
ERROR MESSAGE -
INFINITE LOOP -
MAINTENANCE CROSSCHECK -
OTHER -

TOTAL 2 9 19

LI T T O A .
== W= WD

In this table it is interesting to note that 68% of the errors specified in

CPCI 6 were related to some form of output anomaly (incorrect, missing, or error

message).

Based on the data available it cannot be readily determined which errors are
attributable to specific MPP or software tools usage. However, an examination of
error types and means of initial detection may provide insight into whether or
not the use of MPP or software tools should have detected the presence of errors
(e.g. Did any errors slip thru the code and documentation reviews, testing,
etc.). Table 4.14 compares the error type to the means of initial detection.

Analysis of this data leads one to the following observations. Almost all of
the error types designated as specification errors were detected by an incorrect
output or result. This implies that the software testing, which tests for the
adherence of the software to the design specification among other things, was not
complete with respect to specification testing for all specifications and
requirements. Of the errors found, a very small percentage were detected via
documentation review or maintenance cross check. This would seem to be
intuitively obvious since it is unlikely that the maintenance staff would
purposely look for errors. It must be emphasized that these are simply
observations. The scarcity of the data precludes the establishment of conclusive
results.

4-26

U 5T 4 .

(X =] ~-“~OOOOO0O
=
=
—
B 00 O-HOOOO
wl
[
[
=)
w oo ooooo«w
=z o
= v
= =
bt < oo oOoocoOMmMO
ot =
-
8
u O ©OOCOOwO
w
=
w
u Ded NOHOWO
w
A
-4
w O HOOO~O
J
w
w IPQO
o S,
- "8y
” -0 ©OHOOOO
-3
o
a3 S
el
= <
»
< 5 wwd
w suw OQce
3 ¥ «qaod
=2 Wil bl
< w 4J e o
- w ca Wil J6°
& OI%I—-!—(M
= w— zzzmg
- Eo—il—lowz
o —
x QOLWWi-OX
b4 -Fu05m<\
o 2tz E o
= sSsESssgE
2e°8EE=8E
e AITOSIO
4-27

e s TATIALG o4 Ve ST AR et

4.3.4 Data Collection Refinements

The following recommendations are made to refine the data collection process
to provide more usable and consistent data:

1)

2)

3)

4)

5)

To collect a complete set of maintenance data, it is essential to
initiate the data collection process immediately after the acceptance of
the software product.

Recording of error correction information should be refined to provide
more exact measurements of manpower and computer resource expenditures.
There should be a breakdown of activity recorded (i.e. error detection,
correction etc.) and standardize. definition of terminology.

The PCD/PMR packages should be updated to include the specification of
lines of code modified. When reviewing a PCD/PMR packet it was often
difficult to determine the lines of code that were added, deleted or
modified. This can be overcome in one of two ways:

0 Include before and after source listings within these data packets,
or

0 Include new fields on the forms to report lines of code modified,
programming language, and module name.

Provide distinct accounting of error correction and enhancement for
program modification. When a PCD/PMR reports a combined error
correction and enhancement, a separate accounting should be kept of the
resources expended, lines of code modified etc. This will enable a
separation and proper weighting of these activities in future analysis.

Include better tracking of software modifications from time of
modification to testing and, integration within new version release.
Once a problem is "corrected" (by a PCD/PMR) it is not known whether or
not it will cause a problem in a system upgrade. Also, the amount of
time spent in integrating and testing the corrected code is not included
in the Program Control form. Nor is it known if a problem is
"recorrected" because of a failure in integration and testing. This
information is important due to the fact that once a problem is corrected
the process is not complete until integration and testing occurs. A
correction may cause a problem in another module which does not surface
until integration and testing is performed.

4.3.5 Future Analysis

(o]

Productivity
It is a desirable for future productivity analysis to establish a

conversion factor for on site compilers for the purpose of determining the

4-28

R

number of assembly code lines per HOL line of code. Some compilers will give
you the option of an assembly listing from a compiled HOL program. By taking
some random programs and determining their size in the HOL lines of code and
the resultant assembly lines of code a conversion factor for that compiler
can be obtained. Once a conversion factor for each HOL compiler used on PAVE
PAWS is determined, the accuracy of the factors can be determined. With
these factors in hand their use will eliminate the partiality that exists
between HOL and lower order langages (LOL) when counting lines of code.

o Determination of Software Quality Factors

Once an adequate amount of information has been collected the
reliability and maintainability of specific software modules can be
ascertained. By analyzing software modules with high and low degrees of
reliability and maintainability it may be possible to determine the factors
that impact software quality.

o Comparison to Other Projects

As more data is acquired at the DACS on the maintenance of computer
software, it is recommended that studies be performed comparing the results
and observations contained in the PAVE PAWS Database with other databases.

4.4 Conclusions and Recommendations

Although the data that was available during this study was scarce and too
limited to form conclusive quantitative determinations, the experiences,
opinions and comments of the PAVE PAWS maintenance staff provide a sufficient
basis to develop some strong conclusions on the use of Modern Programming
Practices and Software Engineering Tools.

From the viewpoint of the PAVE PAWS maintenance staff, Modern Programming
Practices, Tools and Techniques are a valuable asset, not only from the product
quality viewpoint but also with respect to the maintenance structure and process.
The use of these practices, tools and techniques during development has produced
software which is more consistent and error free than seen in previous systems.
Most important to the PAVE PAWS staff is that the code produced is simpler (less
complex), more straight forward and structured. In the maintenance environment,
these same Modern Programming Practices, Tools and Techniques are an even more
valuable asset.

In the PAVE PAWS environment where the prime dictums are “timely response to
the operations world" and "accuracy and reliability for any modification to the

4-29

S = 1 ; MR o . e 7 Wdasiniin e e w et e el el e ae o b AR
P AT -y o v D

system", these practices and procedures are required for the production of
reliable software modifications. While the maintenance of the PAVE PAWS software
is early in the life cycle of the system, the maintenance staff has already
placed heavy reliance on Modern Programming Practices, Tools and Techniques. To
date, the staff feels that this reliance has been justified.

The greatest handicap to the PAVE PAWS maintenance staff is caused by the
maintenance documentation. The delivered documentation (the "A" Specs, "B"
specs, “C" specs, HIPOS, POL and written commentaries) describe the PAVE PAWS
system from the development standpoint as the system was being created. To the
developer, this approach provides good documentation and traceability of the
system during the development process. For the maintenance process, the
documentation must reflect the current status of the system from the top-down as
well as from the bottom up. The maintenance staff has pointed out that they have
to be able to find the location of an error and be able to determine the
conditions that caused the error (top-down). Once found, they need to know what
affect a proposed modification will have on the system (bottom-up).

The PAVE PAWS personnel were asked to clarify their remarks and where
possible to indicate what additional documentation or tools are required to
support the maintenance process. The PAVE PAWS staff feels that for
documentation to be useful, it must reflect the current status of the system. It
must be organi-ed in a manner that allows a prospective viewer to scan it top-
down. In a system the size of PAVE PAWS, functional charts and associated
software organization charts are required to present a graphical view of the
system. While graphical presentations are helpful, software modifications
require detailed knowledge of the system software organization. Graphical
representations of the modules (CPCs) which make up an overlay, overlays that
form a major system function (CPCG) and the CPCGs that form a CPCI are also
necessary to show the sofiware organization.

Because of the limited amount of empirical data available for this study, no
conclusive results can be made from analyzing this data to determine the effects
of the use of MPPs and SE tools on the maintenance phase of the software life
cycle. However, procedures were established for the continual collection and
processing of the data to form the basis of a Software Experience Maintenance

4-30

R L e

Database at the DACS. The existence of this data base and continued receipt of
data from the PAVE PAWS maintenance 1ife cycle will greatly facilitate studies on
maintenance costs, comparisons with other systenis to determine relative effects
of comparable or alternative tools and techniques, and productivity based on
factors such as programmer experience, program size, software complexity, etc.

4-31

o Qoo Lo, gn ad SC A 1D K
r_'m"f\‘\W)“’m mm

§
%

REFERENCES

BAKE?77 Baker, W.F. "Software Data Collection and Analysis: A Realtime
System Project History." Technical Report RADC-TR-77-192. Griffiss
Air Force Base, New York, Rome Air Development Center, 1977. AD#041 644.

DONASO Donahoo, J.D.; Swearinger, D. Computer Sciences Corporation, *A
Review of Software Maintenance Technology." RADC-TR-80-13. RADC,
Griffiss Air Force Base, New York 1980. AD#A082 985,

JUNK79 Junk, W.S., McCall, J.A., "Reference Manual: Price Software Model”,
RCA Price Systems, December 1975.

JONE78 Jones, T.C. "Measuring Programming Quality and Productivity." IBM i
Systems Journal 1978, 17, (1), 39-63.

MCCA77 McCall, J.A.; Richards, P.K.; MWalters, G.F. General Electric
Company, "Factors in Software Quality: Concept and Definitions of
Software Quality." RADC-TR-77-369. Volume 1. RADC, Griffiss Air
Force Base, Rome New York 1977. AD#A049 014.

RCAP75 Reference Manual: Price Software Model, RCA Price

STAN77 Stanfield, J.R.; Skrukrud, A.M. System Development Corporation,
"Software Acquisition Management Guidebook: Software Maintenance." \
ESD-TR-77-327. Contract Number F19628-76-C-0236. Electronic
Systems Division, Hanscom Air Force Base, Massachusetts.

THAY76 Thayer, R.A., et al. "Software Reliability Study." RADC-TR-76-238.

Griffiss Air Force Base, New York, Rome Air Development Center,
1976. AD#AO30 b8

WILL76 Willmorth, N.E.;Finfer, M.C.; Templeton, M.P. System Development
Corporation. "Software Data Collection Study Summary and
Conclusions." RADC-TR-76-329. December 1976. Vol I, AD#A036 115.

ZELK78 Zelkowitz, Marvin V., “Perspectives of Software Engineering,
Computing Surveys, Vol 10, No. 2, June 1978.

£ e T RS Bt Y. :mxmww FOTINTTS i Al AR ANE ¢ - Sl WP el v s oo A R TR N

_

APPENDIX A
INSTRUCTIONS FOR COMPLETING
DATA COLLECTION FORMS

A-1

e e o = e e o rreanen? T

The
personnel
start of

PERS
NAME
AGE

DATE
PROJ
JoB

POSI
GROU

A.

INSTRUCTIONS FOR COMPLETING
THE PROGRAMMER EXPERIENCE PROFILE

purpose of this form is to classify the background of the
on each project. It should be filled out once at the
the project by all personnel.

ONNEL ID. Leave blank
Your full name
Optional
Date profile is being completed
ECT Optional
TITLE Optional
TION Gs12, 0-1, E-5
P Name of company or government branch
EDUCATION

Degrees. Fill out educational background.
Courses. Fill in number of university and in-house
computer science courses,

WORK EXPERIENCE

Give years involved with computers and percent time in each
listed activity. Name the languages, machines and operat-
ing systems you utilize on this project and the number of
years (nearest year) experience with each.

SPECIFIC EXPERIENCE

Give years (to nearest year) involved with the following
techniques, languages and operating systems.

1. TECHNIQUES - Give number of years (to the nearest year).

Structured Programming - Writing programs using only a
limited set of Control structures (e.g., if-then-else,
do while).

PDL - A Program Design Language. An algorithmic speci-
fication of program as a function of its input and out-
put data.

HIPO - Hijerarchical Input Process Output. A graphical
technique describing a program as a function of its
input and output data.

A-2

- ot e e

Top Down Development - A technique where high level
modules are developed before the modules that are
called by these high level routines.

PSL ~ The Program Support Library which provides
hierarchical levels to ensure qualification of the
software.

Pre-Compilers - Software which extends the capabilities
of HOLS by allowing structured coding.

Chief Programmer - A technique where an individual

programmer writes top level code and major interfaces
and delegates responsibility to others to complete it.
A librarian manages all source code and documentation.

PROGRAMMING LANGUAGES - Give number of years (to the
nearest year) you have used these programming
languages.

MACHINES AND OPERATING SYSTEMS - Give names of machines
and operating systems and the number of years exper-
jence with each one {0 the nearest year). List only
the three with which y u have the most experience.

PROGRAMMING APPLICATIONS - Give the number of years

experience you have in programming for each of the
listed applications.

A-3

AL AR AP IR 2 : rer

PROGRAMMER EXPERIENCE PROFILE

PERSOMNEL 1D
HANE AGE DATE
PROJECT Jos TITLE
POSITION SROUP (DIVISION)
A. EDUCATION (IN YEARS)
HIGH SCHOOL TEAR GRADUATED
COLLEGE
OEGREE DEGRES YEAR HAJOR LOZATION
¥ COAPUTER SCIZWCE COURSES __ # COMPUTER SCIEMCE CREDIT HOURS TAKEN _____

COMPUTER SCIENCE SEMINARS

8. WORK EXPERIENCE

¢ YEARS WITH COMPUTERS

% YEARS [N [NOIVIDUAL EFFORT

% YEARS IN TEAM EFFORT

% YEARS IN SUPERVISORY CAPACITY

TARGET LANGUAGE(S) MAME

TARGET MACHINE(S) NAME

TARGET QPERATING SYSTEMS (NAME)
C. SPECIFIC EXPERIENCE (RESPONSE [N YEARS UNLESS OTHERWISE INDICATED)

i

1. IECHNIQUES 2. PROGREMMING LANCUAGES
STRUCTURED PROGRAMMING JOVIAL -
POL ! ASSEMBLER
H1PO — FORTRAN —
TOP-00MN DEVELOPMENT — coBoL
PSL ALGOL
PRE-COMPILERS — pL/S —
CHIEF PROGRAMMER TEAM — PASCAL —_—
oTHER OTHER

3. OPERATING SYSTEMS
MACHINES OPERATING SYSTEMS RS

4. PROGRAMMING APPLICATIONS (YEARS)
BUSINESS
SCIENT1IF1C/PATHEMATICAL
SYSTEMS PROGPAMMING
REAL-TIME SYSTEMS

TABASE APPLICATIONS
CTHER

1111

A-4

PERSONAL EXPERIENCE PROFILE CODING FORM

personneL tof | |

INNREERE

NAME T T TP P T T T TT 1 Yew
AGE 28-29
DATE Vo 30-35
PROJECT | T 1 38-50
08 TITLE HEEERRLE
POSITION l Nn-75
'GROUP (DIVISION) { | |76-78
EDUCATION COLLEGE [|79
HIGH SCHOOL 80
YEAR GRADUATED 1-2
DEGREE DEGREE YEAR MAJOR
3-1
12-20 }
21-29 T
30-31 # COMPUTER SCIENCE COURSES
32-33 # COMPUTER SCIENCE CREDIT HOURS TAKEN
38-35 ||| # COMPUTER SCIENCE SEMINARS
WCPK EXPER{ENCE 36-37 # YEARS WITH COMPUTERS
38-39 % YEARS WITH INDIVIDUAL EFFORT
40-4 % YEARS TN TEAM EFFORT
8283 | ! | % YEARS IN SUPERVISQRY CAPACITY
TECHNIQUES LANGUAGES
STRUCTURED PROGRAMMING 44-45 JOVIAL 60-61
POL 46-47 ASSEMBLER 62-63
HIPO 48-49 FORTRAN 64-65
TOP-DOMN DEVELOPHENT 50-5) COBOL 66-67
PSL , 5253 ALGOL 68-69
PRE-COMPILERS |_| | 54-55 PL/I 70-71
CHIEF PROGRAMMER TEAM 56-57 PASCAL 72-73
OTHER 58.59 OTHER 74-75

A-5

T e v e e

W SN A by i 757 - v

PERSONAL EXPERIENCE PROFILE CODING FORM

PROGRAMMING
APPLICATIONS

BUSINESS
SCIENTIFIC/MATHEMATICAL
SYSTEMS PROGRAMMING
REAL-TIME SYSTEMS
DATABASE APPLICATIONS
OTHERS

13-28
29-44
45-60

1-2
3-4
5-6
7-8
9-10
-1

MACHINES

OPERATING
SYSTEM

YEARS

INSTRUCTIONS FOR COMPLETING
THE CPCG DESCRIPTION FORM

The purpose of this form is to obtain general information con-
cerning the CPCGs in the PAVE PAWS environment. It should be com-
pleted for each CPCG initially in the system and everytime there-
after when it is modified.

PSL DATE:

Date of the PSL management report from which this
CPCG data is extracted.

LIBRARY LEVEL:
Library level from which the CPCG size data is ex-
tracted. Normally set equal to "ALL".

DATA SOURCE:
PSL Management Report from which the size data is ex-

tracted. Set to:

"PRG" if from Summary by Programs
or "SEG" if from Summary by Segments
Normally, this parameter is set to "PRG".

SOFTWARE IDENTIFICATION:
Give the CPCI name and CPCG name of the program
as listed in the PSL.

SPECIAL ENVIRONMENTAL FACTORS QF THIS COMPONENT:
Answer "Y" or "N" to those environmental factors

which apply to this program.
GENERAL PROGRAM INFORMATION:

Number of CPCs: The total number of programs con-
tained in this CPCG.

Number of Segments: The total number of INCLUDEd
Segments contained in this CPCG.

NOTE: Do not count CPCs or Segments at a
higher library level if they are current-

ly at a Tower level,
Number of Source Lines: The total number of source
statements. including com-

ments.

Number of Machine Words: The total number of words

of object code into which
the source code compiles.

A-7

CPCG DESCRIPTION FORM

Sofiware Identification:

CPCI CPca

Special Environmental Factors of the
Component:

a) Special Display

b) Detailed Operational Re-
quirements Definition

c) Change to Operational
Requirements

d) Real-Time Operation
e) CPU Memory Constraint
f) CPU Time Constraint

g) First S/W Developed
on CPU

General Program Information:
Number of CPCs
Number of Segments

Number of Source Lines

LT

Number of Machine Words

A-8

PSL Date:
Library Level:

Data Source:

h)

i)
J)

k)

1)

m)

Concurrent Development
of ADP Hardware

Time Sharing (vs Batch)

Development Using Separate
Facility

Development on Opera-
tional site

Development on other
that Target System

Development at more
than one site

Programmer Access to
Computer

o — e+ =

6-v

CPCG DESCRIPTION CODING FORM

SOFTWARE IODENTIFICATION crCl
CPCG
SPECIAL ENVIRONMENTAL FACTORS
SPECIAL DISPLAY
DETAILED OPERATIONAL REQUIREMENTS DEFINITION
CHANGE TO OPERATIONAL REQUIREMENTS
REAL TIME OPERATION
CPU MEMORY CONSTRAINT
CPU TIME CONSTRAINT
FIRST S/W DEVELOPED ON CPU
CONCURRENT DEVELOPMENT OF ADP HARDWARE
TIME SHARING (vs BATCH)
DEVELOPER USING SEPARATE FACILITY
DEVELOPMENT ON OPERATIONAL SITE
DEVELOPMENT ON OTHER THAN TARGET SYSTEM
PROGRAMMER ACCESS TO COMPUTER

PROGRAM SUPPORT LIBRARY DATA

PSL DATE LEVEL DATA SOURCE NUMBER OF
PROGRAMS

1-4

[T 1] 5-13

14
15
16
17
18
19
20
21
22
23
24
25

HENEEENERREEN

26

NUMBER OF
SEGMENTS

SOURCE SIZE OBJECT SIZE

I3 OI17 OI13 1™

ENENRENREEREEEREEN

27-32 33-35 36-38 39-41

42-45

46-51 §2-87

CPCG STATUS CODING FC2¥

CPCG 1-4 PSL DATE 5-10

HEERgEEEEEN

CODE PROGRESSION

PRG VN CPT VN INT VN FIX VN TST VN FRZ VN DEL VN
HENEERNENANERNNERRENINRERNEENEENRENEENERNENRNREEN
n-17 18-24 25-31 32-38 39-45 46-52 53-59

CODE DURABILITY
PRG 60-66 CPY 67-73 INT 74-80 FIX 81-87 TST 88-94 FTZ 95-101 DEL 102-108

| !]

109-114 115-120 121-126 127-132 133-138 139-144 145-150

INSTRUCTIONS FOR COMPLETING THE
CPCG MAINTENANCE ACTIVITY FORM

This form is used to keep track of the time expenditures by

PAVE PAWS personnel from the time a specific maintenance activity
is initiated, to its completion. A specific maintenance activity
js defined as: 1) the correction of a detected error, 2) the
addition of a new function or capability to the PAVE PAWS system,
3) the deletion of an existing function or capability of the

PAVE PAWS system, or 4) the optimization or enhancement of an
existing PAVE PAWS capability or function.

This form is to be completed each time maintenance is per-
formed on a CPCG. This form is initiated when the Change Review
Board (CRB) minutes indicate that a Discrepency Report has been
submitted and a Memorandum of Recommended Action has been approved
by the CRB. It is completed when a new Software Version Release
containing the associated documentation has been received.

DR NUMBER: Discrepency Report sequence number.
DATE: Date Discrepency Report was submitted.

LOCATION OF ACTIVITY: Give the CPCI name and CPCG name of
the program being modified. A MAF must be completed for each
distinct CPCG being modified, even if all are under the same
Discrepency Report.

MAINTENANCE TYPE: Number the reasons for maintenance (1=
primary, 2=secondary) if there is more than one reason for
the change. Give a brief description of the change.

SPECIFICATION PRECISION: Check the precision of the design
specifications produced for the change.

SIZE: Give the lines of source code and object code size of
the code necessary to implement the change if known.

URGENCY: A user assessment of the urgency at some particular
phase of the maintenance activity is requested.

A-11

R T B Y T VPR U S WP TR ORpepe Loy voneiog

The assessment is a rating of E, U, or R where urgency is
defined as:

E. Most Urgent - system critical, respond as rapidly
as possible;

U. Urgent - higher priority than the average mainte-
nance cycle;

R. Least Urgent - perform in the average maintenance
cycle.

DIFFICULTY OR COMPLEXITY: Requires an assessment by the
evaluator of the degree of difficulty in performing some op-
eration in the maintenance activity. The appropriate level
of complexity should be checked.
1. Very Difficult or Complex - impacts more than one
CPCI;

2. Difficult or Complex - impacts more than one CPCG;

Medium Difficulty or Complexity - impacts more than
one CPC in a CPCG;

4, Simple-minor modifications to several CPCs;
5. Very Simple-minor modification to a single CPC.

SECTION A: Complete this section if a change is being made
for a reason other than new requirements.

MEANS OF INITIAL DETECTION: Check the appropriate means by
which the error was initially detected. Enter 1 for the
primary reason. If there was a secondary reason, indicate
by entering 2. Up to two may be marked.

EFFORT IN DIAGNOSING THE ERROR: Number of Runs to Diagnose:
Give the number of computer runs used in correcting the error.

ELAPSED COMPUTER TIME: Give the number of hours of computer
time used in correcting the error.

WORKING TIME TO DIAGNOSE: Give the total time involved in
determining change to be made.

PROBABLE ERROR SOURCE: Enter 1, 2 or 3 for those items which
most likely explain the source of the error. Enter 1 for the
primary source. If there was a secondary source, indicate by
entering 2. If there was a third reason, indicate by enrter-
ing 3. Up to three sources may be marked.

SECTION B: Complete when the maintenance activity involved
making a change to the software.

A-12

A 5,2k

s o e—p——— - - -

SOFTWARE CHANGE REQUIRED:

New Requirements: If the change is a result of new re-
quirements, check those appropriate new requirement
categories. Up to three may be marked. Indicate pri-
mary, secondary, and tertiary be entering 1, 2 or 3,
respectively.

Nature of Change: Check the appropriate nature of the
change involved. Up to three may be marked. Indicate
order by entering 1, 2 or 3.

SECTION C: To be completed on the form.

For each stage of the maintenance activity give the following
information:

Date: Give the date each stage was started and
completed.

Personnel Hours: Give the amount of time in each person-
nel catagory that was devoted to the maintenance activity
in tenths of hours. For some stages of the maintenance
activity some personnel catagories may not have devoted
time to the maintenance activity in which case time
should be recorded as zero.

CPU Time: Give the amount of computer time needed to
complete each stage of maintenance.

Personnel ID: Identify the individuals performing the
activity in each stage.

SECTION D: Flip the MAF over and list the names of the
segments changed and the number of source lines of code added,

deleted or modified in each segment,

A-13

o Gt SO ATTI I A His 55 TR e . T, R 5 oo

¥ CONPONENT MAINTENANCE ACTIVITY FORM DATE,

Location of Activity CPC] 4" CPC/Sagmer

Raintensnce Type: Ervor Lorrection Add Capability Yersion Malease ¢
Delete Copaditity Optimize/Enhance

Brief Description of Change to be wade

Specification Precision: Very Precise Precise Imprecise

Stze of Chonge: Source Code Lines Object Code Instructions

Urgency of Maintenance Activity (1-3)

Complexity of Muintensnce Activity: Very Cemplex Complex Medium Steple
Very Stmple _______

SECTION A Complete if Maintanance Activity wes for Ervor Corvection

MEARS OF INITIAL DETECTION - ¢ only for correctioms {not Mew Reas.)

~ More than one category may be ¥ 'ed
a. Hend Processing —__ 0. Interrupt Error (Code VI |
b. Personsl Commmnication e & Incorrect Output or Result h
€. ,Infintts Loop —— o Missing Output]
k. 3
1.

. Ervor Message __
. Code Review ____
. Decummntatien Review
- Mpintanance cresscheck (35 & result of & Change In other software) . Special Osbwp Cede ____
e 1. Other, Dascribe
EFFORT IN DIAGNOSING THE ERROR - Do not include affort spent tn Initial detection

8. Mo, of Auns to Disgwose Elepsed C Tise () Recodived ____

b. Working Time to Diagnose: Deys Wours __ Analysis Bagins ___

¢. No. of Lines of Code: Added Deletad Cotracted Project Opens ____
EAOR SOURCE
s Wisintergeetation ___ e. Spacified Interface Mot

of Spec. Implemeted Correctly

e b 1ncorrect Spec. 1. Softwere Interface
. Incamplete Spec. 9. Hardmre Interface

. Specified Function Not ___ h. Opersting System o

Inpiamented Correctly 1. s‘m"m:-n —

3. Dack Setup Error o. Operstor Lrver
k. Computstienal Error ____ p. Due %o Prier

1. bats 1/0 frror Yodification
=,
L]

l

"
o
g
§
£
i

. Logtc Errer ——
. rr:‘"m"""" r. Other, Explatn

o

SECTION) Complete tf Maintanance Activity was to meke a chenge.
MATURE OF CNANGE 4 REOUIADENT - 7 those which epply

2. — Docusentation d.____ Structure) 8. Masion 0. Hrdmre
{Preface or Comments; Algorithmtc
8 Agort b.__ Engingering Mode) «___ Other, Elatn

b, ___ Fix lnstruction f.___ Other, Explatn
€. Software lwplementation
€. . Change L

ERMOR CORRECTION 7IDED 8Y PROGRA'! ARIOTATION? YL) .

SECTIGNC Meintenance Effort Required for Change or Correction
STAGE DATE *PERSONNEL HOURS CPU TINE PERSOMNEL 1D
Received Forvarded Malyst Progremmer Clerical

| destgn Ertort
Coding Effort
unit Testing
Intregation Testing
Yesting Revie-)

Installation |

* Record Hours to nearest tenth of an hour

2 . TETI

s PE 5N L . . S T em s natem et Gt ke e e a o i - e A AT,

MAINTENANCE ACTIVITY CODING FORM

1-5 OR #
CPClI
cPCa

CPC/SEGMENT

25 MAINTENANCE TYPE

27
SPECIFICATION PRECISION
URGENCY OF MAINTENANCE
COMPLEXITY OF MAINTENANCE

MEANS OF INITIAL DETECTION
PROGRAMMER ASSIGNED

EFFORT TO CHANGE

NO. OF FILES AFFECTED
ERROR SQURCE

ADDED
DELETED
DR #1-5 CHANGED 6

7 e [TTTT T en

12-15

16-19

| 20-24 (LEAVE BLANK IF MORE THAN

ONE CPC)

26
3 28 VERSION RELEASEE[]Z?-Z!O

1]

| -3

33 INTEGERS - RIGHT JUSTIFIED
1 34-35 ALPHABETIC ~ LEFT JUSTIFIED

36-37
38-39

P 1 1 [20-46

! l 47-50 §1-54
MANHOURS COMPUTER HOURS TENTHS

55-57
NATURE NEW RE-
OF CHANGE QUIREMENT

58-59 €4-65 70-N

60-61 66-67 72-713
62-63 68-69 74-75

FILE NAME AFFECTED 7-80

ol e i T AFEBAE LTIV MBI ST RFRT € e

o L

e

o

- v O IR 15 - N IET R § %

APPENDIX B

PAVE PAWS MAINTENANCE DATABASE

Pt S

3

1. INTRODUCTION

APPENDIX B

PAVE PAWS Maintenance Database

The purpose of this Appendix is to describe the contents of the PAVE PAWS

Maintenance Database. The database consists of the following sequential files:

PPPEP
PPDRH
PPMAF
PPCDF
PPCSF
PPPCH
PPSCH

Programmer Experience Profile File
Discrepancy Report History File
Maintenance Activity File

CPCG Description File

CPCG Status File

CPC Change History File

Segment Change History File

mhaer

&

2. Programmer Experience Profile File (PPPEP)

This file is used to describe the experience of the members
of the PAVE PAWS maintenance staff. Each experience profile is
recorded in a set of three (3) records as depicted in Figure B-1.
The input source is the PEP form. Major categories of experience
include:

Age and Rank

Formal Education and Major Course of Study
Computer Science Education

Data Processing Experience

Modern Programming Practices Experience
Programming Languages Experience

Computer System Experience

Applications Experience

The following remarks apply to the data items in this file:

(1) The Personal ID Code is formed from the first initial
followed by the first six characters of the person's
last name (Note 1).

(2) Years of experience is recorded to the nearest whole
year.

(3) Experiences not applicable are recorded as blanks in
the appropriate columns of the record.

(4) Some data are not critical and may be recorded on a
voluntary basis. Data of this type includes age,
project name and job title.

This file should be updated periodically as new members are
added to the PAVE PAWS maintenance staff. In most cases, a per-
sonal telephone call to the individual should be all that is need-
ed to allow the individual responsible for maintaining the PAVE
PAWS Software Maintenance Database to complete a PEP coding form.

The data contained in this file can be utilized to compare
the effort and time required to resolve a Discrepancy Report with

the experience of the maintenance personnel with regard to formal
education, on the job training, experience with specific MPPs,
languages and computer systems and specific types of applications

experience.
LOCATION DESCRIPTION FORMAT COMMENTS
RECORD 1
1- 7 Personal ID Code A7 Note 1
8-27 Name of Individual A20
28-29 Age
30-35 Date Profile Completed 16 YYMMDD
36-50 Project Name Al5
51-70 . Job Title A20
71-75 Position (GS12, E-6, 0-1) A4
76-78 Section Name (ANL, ADQ, A3
ADT)
79 Years of College Education Il
80 Years of High School Il
Education
RECORD 2
1- 2 Year Graduated (High School 12
if no College)
3-5 First College Degree (BS, A3 Blank if
AAS) not needed
6- 7 Degree Year (Last Two 12
Digits)
8-11 Major Course of Study A4
12-14 Second College Degree A3 Blank if
(MS, MEE) not needed
15-16 Degree Year (Last Two 12
Digits)

FIGURE B-1 PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP)

B-4

e S ————— e A8 e - E— o ek "R R . Ares 1 S - B VW LU P S wran st re Ta -

T e —————————

T e
s

LOCATION
RECORD 2 CONTINUED

17-20
21-23

24-25

26-29
30-31

32-33

34-35

36-37
38-39

40-41

42-43
44-45

86-47

48-49
50-51

52-53

54-55

56-57

FIGURE B-1

DESCRIPTION

Major Course of Study

Third College Degree
(PHD, MAT)

Degree Year (Last Two
Digits)
Major Course of Study

Number Computer Science
Courses

Number Computer Science
Semester Hours

Number Computer Science
Seminars

Number Years With Computers

Percent of Years Individual
Effort

Percent of Years Team
Effort

Percent of Years Supervisor

Number Years with Struc-
tured Program

Number Years with Program
Design Language

Number Years with HIPO

Number Years with Top-
down Dev.

Number Years with Program
Support Library

Number Years with Pre-
compilers

Number Years with Chief
Programming Team

FORMAT COMMENTS

A4

A3 Blank if
not needed

12

A4

12

12

12

12

12

12

I2

12 Round frac-
tion of years
to nearest
year in the
following
fields

I2

12

I2

12

12

12

PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

B-5

e —— N

LOCATION
RECORD 2 CONTINUED

58-59

60-61
62-63
64-65
66-67
68-69
70-71
72-73
74-75

RECORD 3
1- 2

3- 4
5- 6
7- 8
9-10

11-12

13-19
20-26

27-28

29-35
36-42

FIGURE B-1 PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

T e e g At e s < [

DESCRIPTION

Number Years with Other
Techniques

Number Years with JOVIAL
Number Years with ASSEMBLER
Number Years with FORTRAN
Number Years with COBOL
Number Years with ALGOL
Number Years with PL/1
Number Years with PASCAL

Number Years with Other
Languages

Number Years with Business
Applications

Number Years with Scien-
tific/Math Applications

Number Years with System
Programming Applications

Number Years with Real-
time Applications

Number Years with Data-
base Applications

Number Years with Other
Applications

Name of Computer (Primary)

Name of Operating System
(Primary)

Number of Years This
System (Primary)

Naii- of Computer (Secondary)

Name of Operating System
(Secondary)

FORMAT

COMMENTS

12

I2

12

12

I2

I2

I2

A7
A7

12

A7
A7

CDC CYBER

NOS

IBM 370

0s

B e ——

—7-

LOCATION

DESCRIPTION

RECORD 3 CONTINUED

43-44

45-51
52-58

59-60

FIGURE B-1

Number of Years this
System (Secondary)

Name of Computer (Tertiary)

Name of Ogerating System
(Tertiary

Number of Years this
System (Tertiary)

FORMAT COMMENTS
12

A7 H6180
A7 MULTICS
12

PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

B-7

BV e B

Discrepancy Report History File (PPDRH)

This file is a copy of the PAVE PAWS Discrepancy Report Data-
base (DRDB) developed and maintained by the SPA ADQ branch at

Beale Air Force Base.
this file.

Figure B-2 describes the data contained in

The DRDB is updated by a set of support programs developed by
ADQ whenever a DR is opened, submitted for analysis, closed, or its
status otherwise changed.

LOCATION

RECORD 1
1- 5

7- 9
11-14
16-55
57-63
65-67
69

RECORD 2

1- 7
9-15
17-56

DESCRIPTION

Discrepaincy Report Number
Y = Last Digit of Year
NNNN = Sequence Number

Discrepancy Report Origin
Local D™ Number

DR Description

Date DR Received
Responsible Section

DR Priority

Date Analysis Started
PMR/PCD/PDDR Open Date

PMRYYNNN, PCDYYNNN, PDDRYYNNN,
PDDRYYNNN, PMRYYNNN/PDDRYYNNN,
PCOYYNNN/PDDRYYNNN, or any
remarks desired

FORMAT SAMPLE DATA

A5 10167
A3 7th
A4 B270
A10

A7 100ct79
A3 TAC
Al R
A7 06Nov79
A7 12Dec79
A40

FIGURE B-2 DISCREPANCY REPORT HISTORY FILE (PPDRH)

B-8

R RIARR e

LOCATION DESCRIPTION
RECORD 3

1-15 Name of Programmer Assigned

to the Project

17-23 Estimated Completion Date
25-31 Scheduled Version Release
37-39 Scheduled Operation Date
41-47 Date Forwarded to NCCB
49-51 CCB. Action (APP, REJ, DEF)
53-59 Date of NCCB Action
61-67 Date Project Closed

Note: APP Approved

FIGURE B-2 DISCREPANCYREPORT HISTORY FILE (PPDRH) CONT.

REJ Rejected
DEF Deferred

FORMAT SAMPLE DATA
A15 N. NAHE

A7 10Feb80

A7 PTAC-DO

A7 13Apr80

A7 18Dec79

A3

A7 31Dec79

A7 13Apr80

T vttt 0 W AP

AN RRE P AT iR AI 0 et 3 LA eSO . . e gy RN - SO <

4.

Maintenance Activity File (PPMAF)

Th%s file summarizes the information provided periodically by
the PAVE PAWS System Programming Agency concerning each Software
Version Release (SVR). A set of records is defined for each soft-
ware modification described in the SVR.

The source of the data provided in this file is the CMAF form
and includes, for each software modification, the type of mainte-
nance activity being performed, the redesign specifications preci-
sion for that activity, and the complexity of the maintenance
activity. Also provided is data concerning how the error was de-
tected, the effort involved in diagnosing it, the reason and
nature for a change in the software, and the effort required to
make the change or correction in the software. This data was
summarized from the following Air Force forms:

ADCOM form 103 DR
ADCOM form 542 PMR
ADCOM form 544 MDIS

Dscrepancy Report

Program Modification Request
Modification Design and Interface
Specifications

Proaram Documentation Discrepancy
Rep.rt

Program Change Document

ADCOM form 547 PDDR

ADCOM form 549 PCD

Additional maintenance data related to each problem report was
contained on:

MRA - Memo for Recommended Action
PC - Project Control Report

Accompanying each batch of discrepancy reports are:

Version Release Request (ADCOM form 540)
Version Description Document

DT & E Version Test Report

Recommended OT & E Procedures

Bs b fa -

AD=A119 o081 H'I’ IIS(AICN INST

UNCLASSIF1ED

RONE NY
“‘ PAVE ’Al‘ somm: Mlm Mtlm. (D]

F/¢ 9/2
O-C-OIIS

RADC=TR:

- -

The PPMAF file consists of a variable number of two record
types: The first record type contains, for each Discrepancy Report,
all previously mentioned data with the exception of the names of
the programs and segments which were affected by the modification.
The names of these programs and segments are described in record
type 2, one record for each program or segment.

The PPMAF file format is depicted in Figure B-3. A set of
records is defined for each uniqhe Discrepancy Report/CPCG combi-
nation. If a Discrepangy Report references more than one CPCG,
another Maintenance Activity form must be completed, resulting in
an additional set of records in the PPMAF file for the same
Discrepancy Report number.

This file should be updated perjodically as documentation on
new PAVE PAWS Software Version Releases is received.

The record format for the PPMAF file refers to eleven (11)
notes in the comments column of Figure B-3. Explanations of these
notes are as follows:

Note 1: Maintenance Type -~ Enter up to two codes which de-

scribe the type of maintenance being performed. The
primary reason code is suffixed with a one (1) and

the secondary reason code is suffixed with a two (2).
The 1ist of possible codes is:

E - Error Correction

A - Add Capability
D - Delete Capability
0 - Optimize/Enhance
Example:
Columns 25 - 26 El
Columns 27 - 28 A2 or PP if not needed

v i TR e SV sl DS el S RARIIDIBINIIIINRNSS - v o2. ¢ 4256t 5 DR 2R o VAEAIRD. ;- = b P ine o = - IRILS > wisntny it il Eiale I

gt w0

Note 2: Precision of Change Specification - Enter the code
which best describes how detailed the documentation
(MRA, PMR, PCD, MDIS, PDDR) describes the change to
be performed. The Tist of possible codes is:

VP - Very Precise
PP - Precise
IM - Imprecise

Example:
Columns 31 - 32 Pp

Note 3: Urgency of Maintenance Activity - Enter the code
which best describes the priority associated with
the resolution of this change request. These codes
are usually found on the DR or MRA forms. They are
always found in the machine readable DR Database
(Discrepancy Report History File PPDRH) received
periodically from the SPA. The list of possible

codes is:
E - Emergency
U - Urgent
R - Routine
Example:
Column 33 - U

Note 4: Complexity of Change Activity - Enter the code which
best describes the difficulty of making the software
modification. The list of possible codes is:

VC - Very Complex
Cp - Complex

Mp - Medium

Sp - Simple

VS - Very Simple

Example:
Columns 34 - 35 VS

B-12

Note §5: Means of Initial Detection - Enter up to two codes
which most accurately describe how the problem which
initiated this change exhibited itself. In this
case, the distinction is made between primary and
secondary reason codes by the order which they are
defined. The 1ist of possible codes is:

HP - Hand Processing

PC - Personal Communication

IL - Infinite Loop

MC - Maintenance Crosscheck due to making an
unrelated software change

IE - Interrupt Error

I0 - Incorrect Output or Result

MO - Missing Output

EM - Error Message

CR - Code Review

DR - Documentation

SD - Special Debug Code

0T - Other

Example:
Columns 36 -~ 37 MO

Columns 38 -~ 39 MC or pp if not needed

Note 6:

Programmer ID Code - Enter the code associated with

Example:

the programmer who performed the major portion of
the change. The code is constructed by concatena-
tion of the first six characters of the surname to
the first name initial.

Given the name Mary Smither
Columns 40 - 46 MSMITHE

Note 7:

Number of Segments Affected - Enter the number which

indicates how many programs and segments were
changed, added and deleted from the CPCG undergoing
change. If this is a documentation change only,
enter zero (0). This number determines how many
type 2 records follow record type 1.

B-13

y

Note 8: Source of Error - If the reason for change was due
to the detection of an error, enter the appropriate
code which corresponds to the probable error source.
Up to three (3) error sources may be entered. The
order they are entered determines whether the source
of the error is primary, secondary or tertiary. If
no error occurred, enter blanks in columns 58-63.
The 1ist of possible codes is:

MS - Misinterpretation of Spec’ “ications

IS - Incorrect Specifications

NS - Incomplete Specifications

SF - Specified Function not Implemented
Correctly

SI - Specified Interface not Implemented
Correctly

SO - Software Interface to another Program

HI - Hardware-Software Interface

0S - Operating System

LE - Logic Error

CE - Computational Error

DE - Data I/0 Error

Db - Data Definition Error

CN - Cause Not Found - Workaround Used :

10 - 1/0 Software

PM - Due to Prior Modification i

SS - Support Software

DS - Deck Setup Error

0E - Operator Error

0T -~ Other

Example:

Colums 58 -~ 59 10
Columns 60 - 61 SI
Columns 62 -~ 63 pp (not needed)

Note 9:

Nature of Change - If the software documentation

and/or source code was modified due to the correc-
tion, addition, deletion or enhancement of a func-
tion, enter the type of change made to the system in
columns 64 - 69, Otherwise, enter blanks. The list
of possible codes is:

B-14

D0 - Documentation

FI - Fix Instruction
CC - Change Constants
ST - Structural Change
AL - Algorithmic

0T - Other

Example:

Columns 64 - 65 AL
Cotumns 66 - 67 DO
Columns 68 - 69 P¥ if not needed

Note 10: Type of New Requirement - If the source code or
“documentation was not in error but was modified to
delete or add a capability or optimize performance,
enter the new requirements code from the 1ist below
in columns 70 - 75. If the change was not due to
a new requirement, enter blanks. The list of
possible new requirements codes is:

MI - Mission Changed

EM - New Engineering Model

W - Moge Efficient Software being Implemen-
te

HW - New Hardware being Added or 01d Hardware
being Removed

SS -~ New Support Software being Implemented

OT -~ Other

Example:

Columns 70 - 71 MI
Columns 72 - 73 pp if not needed
Columns 74 - 75 PP if not needed

Note 11: Name of Segment Affected - This entry has three
possible formats, depending upon whether 1) only
one CPC was affected; 2) more than one CPC was
affected by the change; or 3) the CPC name is longer
than 5 characters.

B-15

o

o ot

Example:

#1 -
#2 -

One CPC Affected - When only one CPC is affected by

the change, columns 20 - 24 should contain the name
of the CPC. The normal longname format of a pro-
gram or segment may contain up to 40 characters.

An example is the following for CPCG = TGDB and

CPC = LOAD:

"TGDB.LOAD.SPARE.SPACE.FILE"

Since the first two strings are already identified,
enter "SPARE.SPACE.FILE" in columns 7 -~ 22 of rrc-
ord type 2.

CPC Name Longer than Five Characters - When the CPC

name 1s longer than five characters, enter blanks
in columns 20 -24, The CPC name is included in the
string which starts in column 7 of the record type
2 associated with the segment. For example, given
CPC = LOADER in the segment "“TGDB.LOADER.COMPOOL.
DATABASE”, leave columns 20 - 24 of record type 1
btank and enter:

LOADER.COMPQOL . DATABASE in columns 7 - 29 of record
type 2.

Moya than One CPC Affected - When more than one CPC
Js zffected by a software modification request,
columns 20 - 24 are left blank and the CPC name is
included in the string which starts in column 7 of
record type 2. An example of this case is when two
CPC's are modified due to one Deficiency Report.
Suppose the following segments are affected:
"TGDB.LOAD.SPARE.SPACE.FILE" and "TGDB.LOADER.
COMPOOL . DATABASE". The CPCG name is already de-
fined in columns 16 - 19. The integer 2 will be
entered in columns 55 - 57, right justified. Two
type 2 records are required:

columns 7 - 27 LOAD.SPARE.SPACE.FILE
columns 7 - 29 LOADER.COMPOOL .DATABASE

B-16

2
5
b
i
!
€

LOCATION

RECORD 1
1- 5
6-11

12-15

16-18

20-24

25-26
27-28

29-30
31-32

33
34-35
36-37

38-39

J 40-46
47-50
51-54
55-57
58-59
60-61

62-63
64-65
66-67

68-69

FIGURE B-3 MAINTENANCE ACTIVITY FILE (PPMAF)

DESCRIPTION

Discrepancy Report Number
Date DR Submitted

CPCI Affected

CPCG Affected

CPC Affected

Maintenance Type (Primary)
Maintenance Type (Secondary)

Version Release Affected

Precision of Change Specifi-
cation

Urgency Code
Compiexity of Change

Means of Initial Detection
(Primary)

Means of Initial Detection
(Secondary)

Programmer ID Code

Manhours to Change

Tenths of Computer Hours
Number of Segments Affected
Source of Error (Primary)
Source of Error (Secondary)

Source of Error (Tertiary)
Nature of Change (Primary)
Nature of Change (Secondary)

Nature of Change (Tertiary)

B-17

FORMAT COMMENTS

15

I6 YYMMDD

Ad

A4 One Record for

AS

A2
A2

A2

Al
A2
A2

each CPCG

Leave blank if
more than one

Note 1

Blank if not
needed

Note 2

Note 3
Note 4
Note 5

Blank if not
needed

Note 6

Note 7
Note 8

Blank if not
needed

Note 9

Blank if not
needed

FORMAT COMMENTS

LOCATION DESCRIPTION
RECORD 1 CONTINUED
70-71 Type of New Requirement A2 Note 10
(Primary)
72-73 Type of New Requirement A2 Blank if not
(Secondary) needed
74-75 Type of New Requirement A2
(Tertiary)
RECORDS 2 THRU N+1: where N = # Seaments Affected
1- 5 Discrepancy Report Number 15
6 Segment Added (A), Il
Deleted (D) or
Changed (C)
A35 Note 11

7-46 Name of Segment Affected

FIGURE B-3 MAINTENANCE ACTIVITY FILE (PPMAF) CONT.

‘ B-18

CPCG Description File (PPCDF)

This file is used to describe the physical characteristics
of each Computer Program Configuration Group (CPCG).

This file consists of a variable number of 57 character rec-
ords; one record for each CPCG/PSL date combination. It should be
updated periodically so it can be used for CPCI/CPCG growth
studies.

The PPCDF record format is depicted in Figure B-4. The name
and development environment data in columns 1 - 26 should remain
constant between CPCG updates. However, columns 27 - 57 may vary
between PSL Management Report Dates. The data in this file de-
fines the physical characteristics of each CPCG at a specific
point in time given by the PSL Management Report Date (record
fields 27 - 32).

FIGURE B-4 CPCG DESCRIPTION FILE (PPCDF)

Hardware

8-19

LOCATION DESCRIPTION FORMAT COMMENTS
1- 4 CPCI Name A4
5-13 CPCG Name A9 Key is first 4
Characters
14 Special Display Al YorN
15 Detailed Requirements Al YorN
Definition
16 Change to Operational Al YorN
Requirement
17 Real Time Operation Al YorN
18 CPU Memory Constraint Al YorN
19 CPU Time Constraint Al YorN
20 First Software Developed Al YorN
on CPU
21 Developed Concurrently with Al YorN

o Fint o
v

Time Sharing (Vs Batch)
Developer Used Separate

Developed on Operational Site
Developed on Other than

Programmer had Direct Access

PSL Management Report Date

Number of Source Lines

LOCATION DESCRIPTION
22
23

Facility
24
25

Target System
26

to Computer
27-32
33-35 PSL Library Level
36-38 Source of Data
39-41 Number of Programs
42-45 Number of Segments
46-51
52-57

Number of Object Words

FORMAT COMMENTS

Al YorN

Al YorN

Al Y or N

Al YorN

Al Y orN

16 YYMMDD

A3

A3 Summary by
SEG or PRG

13

14

16

16

FIGURE B-4 CPCG DESCRIPTION FILE (PPCDF) CONT.

B-20

— ———

6.

CPCG Status File (PPCSF)

This file is used to describe the status of each Computer
Program Configuration Group (CPCG).

This file consists of a variable number of 150 character
records; one record for each CPCG/PSL date combination. It should
be updated periodically so it can be used to relate CPCI/CPCG
status, date of change and growth rate to the occurrence of main-
tenance change activity and distribution of efforts.

The PPCSF record format is depicted in Figure B-5. The data
contained in each record is obtained from the following Program
Support Library Management Reports: Code Programming Durability
Report, the Summary by Programs Report and the Summary by Seg-
ments Report.

LOCATION DESCRIPTION FORMAT COMMENTS
i- 4 CPCG Name A4
5- 10 PSL Management Report Date 16

11- 15 Number of Lines Effective I5
Code at PRG Level

16- 17 Highest VN at this Level A2

18- 22 Number of Lines Effective I5
Code at CPT Level

23- 23 Highest VN at this Level A2

25- 29 Number of Lines Effective I5
Code at INT Level

30- 31 Highest VN at this Level A2

32- 36 Number of Lines Effective I5
Code at FIX Level

37- 38 Highest VN at this Level A2

39- 43 Number of Lines Effective 15
Code at TST Level

FIGURE B-5 CPCG STATUS FILE (PPCSF)
B-21

LOCATION DESCRIPTION FORMAT COMMENTS
44- 45 Highest VN at this Level .V
46- 50 Number of Lines Effective 15

Code at FRZ Level
51- 52 Highest VN at this Level A2
§3- 57 Number of Lines Effective 15
Code at DEL Level
58- 59 Highest VN at this Level A2
60- 64 Number of Lines Durable 15
Code at PRG Level
65- 66 Highest VN at this Level A2
67- 71 Number of Lines Durable 15
Code at CPT Level
72- 73 Highest VN at this Level A2
74- 78 Number of Lines Durable 15
Code at INT Level
* 79- 80 Highest VN at this Level p2
81- 85 Number of Lines Durable 15
Code at FIX Level
86- 87 Bighest VN at this Level AZ
88- 92 Number aof Lines Durable 15
Code at TST Level
93- 94 Highest N at this Level A2
95- 99 Number of Lines Durable 15
Code at FRZ Level
100-101 Highest VN at this Level A2
102-106 Number of Lines Durable 15
Code at DEL Level
107-108 Highest VN at this Level A2
109-114 Last Change at PRG Level 16 YYMMOD
115-120 Last Change at CPT Level 16 YYMMOD

FIGURE B-5 CPCG STATUS FILE (PPCSF) CONT.

B-22

'—a!ﬁ-“—'-\)&ﬂ:M\- P S . VRS S g a2 A M

LOCATION

121-126
127-132
133-138
139-144
149-150

Note 1:
Note 2:

FIGURE

DESCRIPTION

Last Change at INT Level
Last Change at FIX Level
Last Change at TST Level
Last Change at FRZ Level
Last Change at DEL Level

VN Version Release Number

Within the PSL, seven hierarchical library levels are defined.

FORMAT COMMENTS

16
16
16
16
16

YYMMOO
YYMMDO
YYMMDD
YYMMDD
YYMMDD

Starting with the highest level in the PSL, these levels

incTude:

DEL - software which is in the field
FRZ - software which has been gualified

TST -~ software undergoing qualification test
FIX ~ software corrections for TST level

INT ~ software undergoing integration test
CPT - software undergoing group test
PRG - software under development/unit test.

8-5 CPCG STATUS FILE (PPCSF) CONT.

B-23

Tk N

_a . - e -

N

7. Program Change History File (PPPCH)

This file contains a list of CPCs (programs) which have been
created or changed since the last software version release.
Figure B-6 depicts the format of this file.

LOCATION DESCRIPTION FORMAT COMMENTS
1- 40 Program Longname A40
42- 47 Program Shortname A6
49- 52 Language A4
55- 61 Date Program Last Changed A8 YY/MM/DD
64- 71 Time Program Last Changed A8 HH. MM, SS
72- 76 Number of Segments in 15
Program
77~ 82 Total Size (Including all 16
Segments)
83- 86 Number of Stubs 14
88- 89 Program Version (Maximum A2
of All Segment Versions)
90- 93 Program Edition (Sum of 14
A1l Segment Editions)
94- 98 Program Instance {Incre- 15
mental For Each Compile)
101-108 Date Compiled A8 YY/MM/DD
110-117 Time Compiled A8 HH.MM.SS
118-123 Object Size (Decimal Words) 16

FIGURE B~6 PROGRAM CHANGE HISTORY FILE (PPPCH)

B-24

8. Segment Change History File (PPSCH)

This file contains a list of INCLUDEed segments which have
been created or changed since the last software version release,
Figure B-7 depicts the format of this file.

LOCATION DESCRIPTION FORMAT COMMENTS
1- 40 Segment Longname A40

42- 47 Segment Shortname A6
49- 52 Language A4
54- 57 Segment Type Ad
59- 66 Date Segment was Created A8 YY/MM/DD
67- 70 Current # Lines in Segment I4
71- 74 Gross Size Including Lines 14

Deteted
76- 83 Date Segment Last Changed A8 YY/MM/DD
85- 92 Time Segment Last Changed A8 HH.MM. SS
94- 95 Segment Version A2
96- 99 Segment Edition 14
100-103 Total Number of Times 14

Segment has Been Changed
104-107 Number of Changes Made to 14

Current Version
108-111 Number of Lines (Gross) 14

for Current Version
113-118 1D of Creater A6
120 Special Flag Al See p. 25

RADC-TR-79-137

128-130 ID of Person who Last A3

Changed the Segment

FIGURE B-7 SEGMENT CHANGE HISTORY FILE (PPSCH)
B-25
TSRS o T T T

